
1 November 1998 Delphi Informant

November 1998, Volume 4, Number 11

Cover Art By: Darryl Dennis

ON THE COVER
6 Picture Perfect � Rod Stephens
Mr Stephens demonstrates algorithms for mapping output pixels back
to input positions and using a weighted average to shrink, enlarge, or
rotate an image. He even provides the complete source, so you can put
these powerful techniques to use in your own applications.

FEATURES
12 Informant Spotlight
Tray Icons � Kevin Bluck
You know those icons on the right side of the Windows 95/98/NT
taskbar? They’re called tray icons. Mr Bluck explains the tray icon API,
and provides us with a component to easily put tray icons to use.

18 In Development
The Object Repository � G. Bradley MacDonald
Delphi’s Object Repository is a great way to share forms and/or objects
among your projects — and with other developers, if you know how.
Mr MacDonald shares some OR tips and techniques.

21 DBNavigator
Delphi Database Development: Part III �
Cary Jensen, Ph.D.
Dr Jensen continues his database series. This month the focus is on the
Database object, which is responsible for nothing less than the data-
base connection itself.

26 Sound+Vision
The Camera Never Lies � Peter Dove
Better late than never! Mr Dove concludes the graphics programming
series he began with Don Peer in January, 1997 with a look at camera
coordinate systems, animated textures, and foreground pictures.

31 Dynamic Delphi
Thread-Safe DLLs � Gregory Deatz
Mr Deatz explains how you can write a thread-safe DLL, even if you
don’t know how the calling application uses threads. Also discussed
are the DllEntryPoint function, thread-local storage, and more.

36 OP Tech
Is Delphi Running the Code? � Yorai Aminov
Shareware developers (among others) often need to know if code is
running under Delphi control. It’s a simple question, but determin-
ing the answer is not. Mr Aminov shows how it’s done.

REVIEWS
40 Wanda the Wizard Wizard

Product Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
5 Newsline
45 From the Trenches by Dan Miser
46 File | New by Alan C. Moore, Ph.D.

2 November 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Woll2Woll Ships InfoPower 4

Woll2Woll Software

announced that InfoPower
4, an upgrade to its visual
component suite for Delphi
3 and 4 and C++Builder, is
shipping.

InfoPower 4’s enhancements
include enhanced RichEdit
control, which is now based
on Microsoft’s RichEdit
Version 2 and supports
embedding of bitmaps and
OLE objects, display and
automatic opening of Internet
URL links, multi-level undo
and redo, and database filter-
ing on RichEdit fields; new
date and time controls,
including a data-bound
DateTime picker and a
MonthCalendar, support for
Year-2000 compliance, for-
matting masks, and many dis-
play customizations for the
calendar; enhanced usability,
such as auto-filling of the cur-
rent date and auto-advancing
upon a valid month, day, or
D C AL CODA Releases Yo
year; an enhanced grid to
support images in both the
titles and the data cells, a
footer section to display col-
umn summary information,
and animated column drag-
ging; a new extendable
DBNavigator component that
supports user-definable
images and actions, integra-
tion with InfoPower’s dialog
boxes, flexible control over
the layout, and support for
multiple rows of icons; a
urTraySpell Words Suite 2
RecordViewPanel com-
ponent that provides a
convenient way to
embed a panel onto any
form containing an edit
control for each field in

the table; and an extended
validation language to sup-
port the IncrementalSearch
edit control.

Woll2Woll Software
Price: US$199; InfoPower
Professional, US$299 (includes source
code and C++Builder compatibili-
ty); upgrades for owners of InfoPower
3 are US$99, and US$129 for the
professional version.
Phone: (800) WOL2WOL
Web Site: http://www.woll2woll.com
.0

D C AL CODA released

version 2.0 of YourTraySpell
Words Suite (YTS), a config-
urable spell check, thesaurus,
dictionary, text editor utility,
and optimized word reposi-
tory.

YTS spell checks all ver-
sions of Delphi, including
the Object Inspector, IDE
Editor, Captions and Hints,
and more. A Delphi-specific
dictionary is available.

Dictionaries in several lan-
guages, including American
English, British English,
Danish, Dutch, French,
German, Italian, Norwegian,
Polish, Spanish, and Swedish,
put an end to spelling dis-
crepancies, inconsistencies,
and errors. Additionally, the
30,000-word Roget’s
Thesaurus and 160,000-word
Definitions Dictionary pro-
vide access to synonyms and
antonyms, as well as the
meaning and context of
words.

YTS resides in the
Windows 95/98/NT System
Tray, and can analyze any
word, paragraph, or docu-
ment from any application,
text editor, HTML editor,
or database. YTS is cus-
tomizable — set it to run
upon Windows startup,
choose which characters to
ignore, set hotkeys, add
words, use the ClipViewer to
see words in context, and
more.

D C AL CODA
Price: US$29.95 for single-user
license; site licenses are available.
Phone: (530) 272-8133
Web Site: http://www.dcalcoda.com
Sandage and Associates
Ships CodeBase

Components II for Delphi
Sandage and Associates
announced CodeBase

Components II for Delphi.
Version 1 provided VCL support

for Sequiter’s CodeBase
Database Engine. Version 2

offers TDataSet encapsulations
of the table and query system,
making it a true “plug-n-play”
replacement for the BDE. With
CodeBase Components II for

Delphi, developers can connect
Delphi’s native data-aware con-
trols (plus many third-party con-
trols, including InfoPower) to the

CodeBase engine.
CodeBase Components II for

Delphi comes with myriad data-
aware controls that let you cre-
ate, index, browse, edit, and
update Clipper, FoxPro, and

dBASE files. Included are propri-
etary data-aware controls for
Delphi 1, 2, and 3, plus two
TDataSet descendant controls

for Delphi 3, allowing the use of
Delphi’s native data-aware con-

trols (along with many third-
party controls).

CodeBase Components II for
Delphi is available for US$210.

For more information, call
(626) 351-1299 or visit

http://www.softsand.com.

http://www.woll2woll.com
http://www.dcalcoda.com
http://www.softsand.com

3 November 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
ASTA Releases ASTA 1.0
The ASTA Technology

Group announced the release
of ASTA 1.0, a smart thin
architecture comprised of
native VCL components
designed for n-tier, thin-client
computing in Delphi.

ASTA components behave
like native Delphi controls.
ASTA’s TAstaClientDataset, a
hybrid TQuery-TTable com-
ponent, delivers design-time
data and supports third-party
tools, such as InfoPower. It
also supports master/detail
relationships and cached
update functionality. It can
be utilized for transitioning
existing programs into
Internet-ready, three-tier
applications.

ASTA-based applications
South Pacific Announces
don’t
require
database
drivers, a
BDE,

ODBC, DLLs, DCOM, or
client configuration —
only the executable.
ASTA’s thin-client applica-
tions are suited for use
over any TCP/IP network,
including the Internet.
TCompress 4.0 and TComp
ASTA can be combined
with other technologies,
including ActiveX.

ASTA Technology Group
Price: From US$250 per developer
and US$250 for deployed server
(US$399 for package); special license
packages are available for corporate
and vertical market developers.
E-Mail: info@astatech.com
Web Site: http://www.astatech.com
LHA 4.0 for Delphi 4

South Pacific Information

Services Ltd. announced the
release of Delphi 4 versions of
TCompress and TCompLHA
compression component
suites.
TCompress 4.0 provides

native components for Delphi
and C++Builder, supporting
easy creation of multi-file
compressed archives, and
database, file, and in-memory
compression using streams.

Included in the TCompress
4.0 set are the TCompress
component, for general pur-
pose multi-file archive,
resource, and stream compres-
sion (includes RLE and LZH
compression as standard); the
COMPONLY unit, a version
of TCompress for making
applications that don’t require
the Borland Database Engine;
the TCDBImage component,
which uses TCompress to com-
press/expand database image
fields; the TCDBMemo com-
ponent, which uses TCompress
to compress/expand database
memo fields; TCDBRichText
component, which uses
TCompress to
compress/expand rich text
database fields (Delphi 3
only); the COMPDEMO
application, a full-source,
drag-and-drop demonstration
of multi-file and database
field compression; and source
examples.
TCompLHA 4.0 helps create

and manage archives compati-
ble with the LHArc and LHA
utilities. One-step methods,
such as Scan, Compress,
Expand, Delete, and Verify
enhance archive management.

Included in the
TCompLHA 4.0 set are the
TCompLHA component; the
TSegLHA compo-
nent, a segmented
archive and backup
manager compo-
nent; the
TCompLHAStream
component, a full-
source TStream
derivative for com-
pression to and from
any stream;
LHADEMO, a full-
source, drag-and-
drop archive manag-
er demonstration;
SFX and MAKEEXE, exam-
ple projects for making self-
extracting/self-installing
archives; and SEGDEMO
and ADDRESS, full-source
applications showing how to
create segmented archives,
and how to add easy
backup/restore functions to
any database application.

South Pacific Information
Services Ltd.
Price: TCompLHA 4.0 registration and
license, US$59; TCompress 4.0 registra-
tion and license, US$59.
Web Site: http://www.spis.co.nz
Engineering Objects
Announces Matrix Math

Toolkit 4
Engineering Objects Int’l

announced Matrix Math Toolkit
Version 4 for Delphi 4 (MMTv4),
which provides the classes need-

ed to make array, vector, and
matrix programming an easy

plug-in.
MMTv4 exposes the terms of

vectors and matrices through the
use of the Delphi default proper-

ty. Matrix code can now be
completely dynamic, yet still use

the standard matrix notation.
MMTv4 uses the Delphi 4

zero-based dynamic array as the
basis for vectors and matrices,
so array shape can be defined
at run time, rather than design
time. The dynamic array imple-

mentation almost eliminates
pointer notation, so the code is

cleaner and easier to read.
All the classes are persistent
(that is, instances can write

themselves to, and read them-
selves from, streams). Vectors
and matrices are designed to
work together. Along with the
source code, the toolkit ships
with demonstration programs.

MMTv4 is available for
US$79.95 (single license),

US$63.96 (up to 10 licenses), or
US$51.97 (11 or more). Visit

http://www.inconresearch.com/eoi
for more information.

http://www.inconresearch.com/eoi
http://www.astatech.com
http://www.spis.co.nz

4 November 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

DBI Technologies Announces Release of Solutions::PIM Professional

DBI Technologies Inc.

released Solutions::PIM
Professional, an upgrade to
the company’s visual calen-
daring tool, Solutions::PIM.
The collection of 15
ActiveX controls allows
developers to add personal
information management,
calendaring, and scheduling
capabilities to Windows
applications.

The Solutions::PIM
Professional package still
includes the yearly, monthly,
week-view, and day-view
calendars. Also included are
the date and time input
controls, the alarm control,
and a .WAV file player.
Enhancements to existing
controls include new print
methods that allow graphi-
cal printing of the displayed
information in the visual
calendars. New stylings have
been added to the visual cal-
endars, such as NT-display-
styles and week-of-the-year
numbering. New security
methods make it possible to
lock appointments based on
user ID and other logic.
Pythoness Releases PSet
Another addition to the
package is the multi-column
day-view visual calendar
control. Developers can set
up ctMDay to view a single
person’s schedule over sever-
al days, or several people’s
schedules in a single day,
showing one to 10 actual
columns (and up to 32,000
additional virtual columns).
Drag-and-drop is supported
to and from the control, as
well as between columns
within the control.

The new package also
includes the Enhanced List
ting 2
control, which fills the gap
between insubstantial list
controls and complex grids
that are excessive for most
applications. With ctList,
developers can display
Microsoft Outlook-style “to-
do” lists or e-mail message
displays (with sub-text),
with sorting, column sizing,
and more.

DBI Technologies Inc.
Price: US$349 (32-bit ActiveX con-
trols, online tutorial, and online Help).
Phone: (204) 985-5770
Web Site: http://www.dbi-tech.com
Pythoness Software has
released PSetting 2, a compo-
nent set for Delphi 2, 3, and
4 that simplifies the process of
maintaining application set-
tings between runs.

PSetting 2 aims to automate
the management of an appli-
cation’s state, including win-
dow positions, dockable tool-
bar locations, font colors and
sizes, etc.

PSetting 2 features several
enhancements, including stor-
ing hidden properties and
complex types (including
TCollection and TComponent
descendants); better registry
management and control,
including saving state infor-
mation in
HKEY_LOCAL_MACHINE
under Windows NT;
improved MRU list control,
including automatic detection
of files that no longer exist;
automatic application restart
after a Windows shutdown;
and more events for control-
ling save and restore options.

Pythoness Software
Price: US$69 (includes source code).
Phone: (208) 359-1540
Web Site: http://www.pythoness.com
Soletta Announces Standard
Delphi Library

Soletta announced the open
beta version of the Standard
Delphi Library (SDL), a data

structure, object persistence, and
algorithm library designed for
the Delphi environment. SDL is
based on the mature design of
the Standard Template Library

(STL), the container-library stan-
dard for C++.

SDL is designed for intermedi-
ate to advanced Delphi pro-

grammers who need sophisticat-
ed data structures or wish to

take advantage of SDL’s large
library of generic algorithms.

SDL is also appropriate for pro-
grammers experienced with the

C++ STL, or ObjectSpace’s JGL
(Java Generic Library).

SDL offers a number of fea-
tures not found in any other

Delphi class library, including
natural storage of atomic data

types, allowing SDL containers to
be used to hold any Delphi data
type (such as Integers, Strings,

Extended values) with no special
syntax; generic algorithms; inte-
grated persistence; a complete

set of data structures; and atom-
ic, associative data structures.

SDL is available for US$75
(SDL binary), US$250 (SDL

source). For more information,
visit http://www.soletta.com.

http://www.soletta.com
http://www.dbi-tech.com
http://www.pythoness.com

5 November 1998 Delphi Informant

News
L I N E

November 1998

Inprise Announces Strategic Alliance with Sun Microsystems

Inprise Details Enterprise Application Server
Strategy
Denver, CO — Inprise
Corp. announced it has
entered into a strategic
alliance with Sun
Microsystems, Inc. to team
Inprise’s development tech-
nologies with Sun’s Solaris
operating environment.
Corporations will be able to
take advantage of Inprise’s
tools for building and run-
ning enterprise applications
on the Solaris. The alliance
is one of several ongoing
initiatives between Sun and
Inprise.

Through a series of mar-
keting programs, the two
companies will continue to
migrate Sun customers to
Inprise’s VisiBroker object
American Automobile A
Reservation System with
request broker (ORB).
Earlier this year, Sun
announced a migration ser-
vices agreement to transi-
tion users of the Solaris
NEO ORB to Visigenic’s
VisiBroker for Java and
VisiBroker for C++ ORB
technology. Visigenic
Software was subsequently
acquired by Inprise in
ssociation Builds
 VisiBroker for Java

Inprise Transfers Visual
and Marketing Responsi
February 1998. Sun and
Inprise are now providing
consulting, as well as docu-
mentation, that map key
NEO features to VisiBroker
features to streamline the
transition between ORBs.
Since the beginning of the
year, Inprise has marketed
VisiBroker to established
Sun customers.
Denver, CO — Inprise
Corp. unveiled the key
components of its Inprise
Application Server.
Scheduled for delivery in
late 1998, the Inprise
Application Server is an
d
b

integrated suite of enter-
prise middleware and devel-
opment tools that provide a
solution for simplifying the
development, deployment,
and management of distrib-
uted applications.

Key components of the
Inprise Application Server
include visual development
tool integration, centralized
management of distributed
applications, a standards-
based infrastructure, reli-
able transactions in a dis-
tributed environment, and
enterprise-level security.

For more information on
the Inprise Application
Server, a detailed executive
white paper is available on
the Inprise Web site at
http://www.inprise.com/
appserver/appserver.html.
BASE Development
ilities to InterBase
Denver, CO — Inprise
Corp. announced the
American Automobile
Association (AAA) has adopt-
ed Inprise’s VisiBroker for
Java object request broker
technology as a key building
block for its new travel reser-
vation system, which will go
live by the end of 1998.
With more than 40 million
members, AAA is the largest
motoring and travel organiza-
tion in the world.

AAA is using VisiBroker to
develop computing systems
that provide a range of travel
reservation products and ser-
vices, such as air, hotel, car
rental, cruise bookings, and
auto-travel routing requests
and assistance. The automo-
bile organization selected
VisiBroker as its distributed
object infrastructure because
of its integrated development
tools and its ability to tie in
disparate data sources, such
as Apollo — a large, global
reservation system for the
travel industry.

AAA is a federation made up
of 94 independent clubs that
are part of an overall AAA
association. Because each club
uses different hardware and
software to meet its business
needs, AAA was looking to
build one application that
would enable the integration
of each individual club’s dis-
parate legacy systems; provide
information access to a large
number of users throughout
the federation; and save time
and money on application
development.
Denver, CO — Inprise
Corp. announced that its
independent subsidiary,
InterBase Software Corp.,
will assume responsibility
for the future development
and marketing of its Visual
dBASE family of Windows
database products.

Visual dBASE 7
Professional and Visual
dBASE 7 Client/Server
Suite are the Windows
95/NT versions of the
Xbase database develop-
ment environment, based
on the Borland visual
development tools and 32-
bit database technology.

Based in Scotts Valley,
CA, InterBase delivers
InterBase, a high-perfor-
mance SQL database
designed to be embedded
into value-added reseller
applications.

For more information on
InterBase Software Corp.
and the Visual dBASE family
of Windows database prod-
ucts visit their Web site
at http://www.interbase.com.

http://www.inprise.com/appserver/appserver.html
http://www.inprise.com/appserver/appserver.html
http://www.interbase.com

6 November 1998 Delphi Informant

On the Cover
Delphi 1, 2, 3, 4 / Graphics

By Rod Stephens
Picture Perfect
Shrinking, Enlarging, and Rotating Images

Delphi provides a couple of easy ways to resize an image. If you set a
TImage control’s Stretch property to True and resize it, the control stretches

or shrinks its image to fit. You can also use the TCanvas object’s StretchDraw
procedure to resize a graphic and copy it onto a canvas.
The following code stretches the image held
in the imgInput control to fit into the
imgOutput control:

imgOutput.Canvas.StretchDraw

(imgOutput.ClientRect,

imgInput.Picture.Graphic);

These methods are fast and easy, but they
often give unsightly results. To enlarge an
image, these techniques simply duplicate
each pixel enough times to fill the new
image. If the new image is five times as big as
the old one, each pixel is converted into a lit-
tle five-by-five box. This produces a blocky
picture like the one shown in Figure 1. To
shrink an image, these techniques remove a
fraction of the pixels from the original image.
If the new image is half the size of the origi-
Figure 1: Enlarging an image using StretchDraw
produces a blocky result.
nal, every other pixel is removed from the
image. Unfortunately, the pixels Delphi
decides to remove may not be the best choic-
es. The removed pixels may contain informa-
tion that is necessary to convey the shape of
the original image.

At best, the result may be rough and
jagged, as shown by the smaller text in
Figure 2. At worst, whole pieces of the
image may disappear. For example, if the
original picture contains a vertical line one
pixel wide, shrinking the image may
remove every pixel in the line. Similarly in
Figure 2, thin parts of the smaller text have
disappeared. The text “Rod Stephens” at
the bottom contains several gaps. Removing
important color information can also cause
the strange plaid-like patterns shown in the
red text and in the image of the hourglass.

This article explains how you can enlarge
and shrink images smoothly in Delphi.
Figure 3 shows an image similar to the one
shown in Figure 1, but this picture has
been enlarged smoothly. The image shows
none of the blockiness in Figure 1, but it is
much fuzzier. The original image is only a
fifth as wide and tall as the picture in
Figure 3, so it contains only 1/25th as
many pixels. There isn’t enough informa-
tion in the original image to fill all the
pixel values in the enlarged image smoothly
without some blurring.

7 November 1998 Delphi Informant

Figure 2: Shrinking an image with
StretchDraw can produce a rough, jagged
result.

On the Cover

Figure 3: Enlarging an image smoothly
produces a slightly fuzzy image with no
blockiness.

Figure 4: Shrinking an image smoothly
removes jagged edges.
The picture in Figure 4 is
much smoother than the
version shown in Figure 2.
There is some blurring in
this image, but the effect
only smoothes edges that
might otherwise be jagged.
This image shows no gaps
in the small text and does
not contain the annoying
plaid-like effects in the red
text or hourglass.

Roadmap to Reduction
To shrink an image, TCanvas.StretchDraw removes some of the pixels from the origi-
nal image. The problem with this method is that information contained in the
removed pixels is completely lost. If they happen to contain important data, such as
the pixels that lie along a thin vertical line, the result can be disappointing.

A better method is to combine nearby pixels by averaging them to produce the
pixels in the reduced output image. One way to do this is to consider each pixel
in the output image. For each output pixel, the program calculates the pixels in
the input image that map to that output pixel. It then averages the red, green,
and blue components of those input pixels to produce the output pixel’s color
value. This process is shown graphically in Figure 5.

Listing One (on page 10) shows the ShrinkPicture procedure — a Delphi rou-
tine that reduces an image. The function reduces the area from_x1 <= x <=
from_x2, from_y1 <= y <= from_y2 in the input canvas from_canvas, into the
area to_x1 <= x <= to_x2, to_y1 <= y <= to_y2 in the output canvas to_canvas.

The key to the code is the function that maps an output pixel back to the input
pixels that determine its value. If the image is being scaled by factors of xscale
and yscale in the X and Y directions, respectively, then the output pixel (to_x,
to_y) is mapped to the rectangle x1 <= x <= x2, y1 <= y <= y2 where:

y1 = Trunc((to_y - to_y1) / yscale + from_y1)
y2 = Trunc((to_y + 1 - to_y1) / yscale + from_y1) - 1
x1 = Trunc((to_x - to_x1) / xscale + from_x1)
x2 = Trunc((to_x + 1 - to_x1) / xscale + from_x1) - 1

After the procedure finds the coordinates of the input rectangle, it calculates the
average of the red, green, and blue color components of those pixels. It assigns
the resulting color components to the output pixel (to_x, to_y).

The example program Sizer demonstrates this method for reducing images (this
program is available for download; see end of article for details). Select File |

Open to load an image. Enter a scaling factor of less than 1 in the Scale edit box.
If you click the Quick Scale button, the program uses StretchDraw to shrink the
image by the factor you specified. If you click the Smooth Scale button, the pro-
gram uses the ShrinkPicture procedure to shrink the image smoothly. Figure 6
shows the Sizer program in action.

Enlightening Enlargement
To enlarge an image, StretchDraw duplicates each pixel in the original image.
If the enlarged image is five times as wide and five times as tall as the origi-
nal, StretchDraw turns each pixel into a five-by-five block of pixels in the
enlarged image. This gives a blocky result like the one shown in Figure 1.

Figure 5: Mapping an output pixel back to the input
pixels that determine its value.

 program Sizer smoothly shrinking a picture.

Figure 7: Mapping an output pixel back to a point within the
input image.

Figure 8: The example program Sizer smoothly enlarging a picture.

On the Cover
While shrinking and enlarging an
image seem to be very different tasks,
a technique similar to the one used by
the procedure ShrinkPicture described
in the previous section allows a pro-
gram to enlarge an image smoothly.

For each output pixel, the program cal-
culates the point within the input
image that maps to the output pixel.
Figure 7 shows this mapping graphical-
ly. Most of the time, that point doesn’t
correspond to an integral pixel loca-
tion. In Figure 7, the output pixel is
mapped to a point in the lower-right
corner of the upper-left input pixel.

If the image is being scaled by factors
of xscale and yscale in the X and Y
directions, then the output pixel (to_x, to_y) is mapped to
the point (sfrom_x, sfrom_y) where:

sfrom_y = (to_y - to_y1) / yscale + from_y1
sfrom_x = (to_x - to_x1) / xscale + from_x1

The program then examines the four pixels at integral loca-
tions near the computed input point. In Figure 7, those
pixels are the four in the upper-left corner. Those pixels
have coordinates:

(ifrom_x, ifrom_y)
(ifrom_x + 1, ifrom_y)
(ifrom_x, ifrom_y + 1)
(ifrom_x + 1, ifrom_y + 1)

where the values ifrom_x and ifrom_y are:

ifrom_y = Trunc(sfrom_y)
ifrom_x = Trunc(sfrom_x)

The program examines the red, green, and blue color compo-
nent values of these four pixels. It uses weighted averages to
calculate the components of the output pixel. The average is
taken so the input pixels closest to the input point contribute
the most to the result.

Listing Two (on page 10) shows the EnlargePicture procedure
— a Delphi routine that uses this mapping method to
enlarge images. If you examine the code closely, you can veri-
fy the special case that occurs when the input point corre-
sponds exactly to one of the four input pixels. In that case,
the weighting factors for the other three points are zero, so
the output pixel’s entire value is due solely to the one input
pixel. That makes some sense. If an input pixel maps exactly
to an output pixel, they should have the same color.

In addition to shrinking images, the Sizer program uses
the EnlargePicture procedure to enlarge images. Select File

Figure 6: The example
8 November 1998 Delphi Informant
| Open to load an image. Enter a scaling factor greater
than 1 in the Scale edit box. If you click the Quick Scale

button, the program uses StretchDraw to enlarge the image
by the factor you specified. If you click the Smooth Scale

button, the program uses the procedure EnlargePicture to
enlarge the image smoothly. Figure 8 shows the Sizer pro-
gram enlarging a picture smoothly using EnlargePicture.

Spin Cycle
The equations for shrinking or enlarging an image are fairly

On the Cover

// Calculate the height and width of the rotated picture.
procedure TSizerForm.GetRotatedSize(theta: Single;

old_width, old_height: Integer;

var new_width, new_height: Integer);

begin
new_width := Round(Abs(old_width * Cos(theta)) +

Abs(old_height * Sin(theta)));

new_height := Round(Abs(old_width * Sin(theta)) +

Abs(old_height * Cos(theta)));

end;

Figure 9: Code that calculates the height and width needed for
an output image.

Figure 10: The example program Sizer smoothly rotating a
picture 30 degrees.
straightforward. In fact, they are simple enough that it’s possible
to map blocks of pixels from the input image onto the pixels in
the output image. The procedures described here do the oppo-
site; they map output pixels back to points in the input image.

Either method will work for enlargement or reduction, but
the reverse method described here also makes many other
kinds of smooth transformations manageable. For example,
you can use reverse mapping to rotate images smoothly.

When you rotate a point (x, y) through the angle theta
around the origin (0, 0), the resulting point has coordinates
(x’, y’) where:

x’ = x * Cos(theta) + y * Sin(theta)
y’ = -x * Sin(theta) + y * Cos(theta)

These equations give the mapping from an input position to
an output position.

The inverse of a rotation through the angle theta is a rotation
through the angle -theta. In other words, to map an output pixel
back to an input position, you apply the previous equations to
rotate the point through the angle -theta. If the output pixel is at
position (x’, y’), then the input position is (x, y) where:

x = x’ * Cos(-theta) + y’ * Sin(-theta)
y = -x’ * Sin(-theta) + y’ * Cos(-theta)

Because Sin(-theta) = -Sin(theta) and
Cos(-theta) = Cos(theta), these equations simplify to:

x = x’ * Cos(theta) - y’ * Sin(theta)
y = x’ * Sin(theta) + y’ * Cos(theta)

Using these equations, a program can rotate an image. For
each pixel in the output image, the program uses the pre-
vious equations to find the point within the input image
that maps to the output pixel. It then uses a weighted
average of the four nearest pixels’ color components to
find the output pixel’s color exactly as the procedure
EnlargePicture does.

Listing Three (on page 11) shows the RotatePicture procedure
— a routine that uses this technique to rotate an image
smoothly. This code varies from the previous discussion
slightly, so it can rotate images around their centers, rather
than around the origin. This is why the coordinates (to_cx,
to_cy) are subtracted from the output pixel’s position before
the calculation, and the coordinates (from_cx, from_cy) are
added to the results.

One last rotation detail remains. When a rectangular picture
is rotated, the corners stick out, so the result is taller and
wider than the original image. The procedure GetRotatedSize,
shown in Figure 9, calculates the height and width the out-
put image needs. The program can use this procedure to
decide how big it should make the output control.
9 November 1998 Delphi Informant
The Sizer program uses the RotatePicture procedure to rotate
images. Select File | Open to load an image. Enter an angle in
degrees in the Angle edit box. If you click the Rotate button,
the program uses RotatePicture to smoothly rotate the image.
Figure 10 shows the Sizer program after it has rotated a pic-
ture 30 degrees.

Get Warped
The technique of mapping output pixels back to input posi-
tions and using a weighted average is a powerful one. It lets
you shrink, enlarge, or rotate an image fairly easily. It also lets
you apply more complicated transformations to an image.
For example, you can stretch, twist, or otherwise warp an
image to produce strange results. Just reverse the transforma-
tion so you can map output pixels back to input positions
and take a weighted average.

Try some shape distorting transformations and see what you
come up with. If you create a particularly unusual image,
drop me a note. If it’s interesting enough, I may post it on
my Web site for all to enjoy. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\NOV\DI9811RS.

Rod is the author of several books, including Ready-to-Run Delphi 3.0
Algorithms [1998] and Visual Basic Graphics Programming [1997], both from
John Wiley & Sons. He also writes algorithm columns in Visual Basic Developer
and Microsoft Office & Visual Basic for Applications Developer. Rod can be
reached via e-mail at RodStephens@vb-helper.com, or see what else he’s done
at his Web site at http://www.vb-helper.com.

http://www.vb-helper.com

On the Cover
Begin Listing One — ShrinkPicture
// Shrink the picture in from_canvas and place it in
// to_canvas.
procedure TSizerForm.ShrinkPicture(

from_canvas, to_canvas: TCanvas;

from_x1, from_y1, from_x2, from_y2: Integer;

to_x1, to_y1, to_x2, to_y2: Integer);

var
xscale, yscale : Single;

to_y, to_x : Integer;

x1, x2, y1, y2 : Integer;

ix, iy : Integer;

new_red, new_green : Integer;

new_blue : Integer;

total_red, total_green : Single;

total_blue : Single;

ratio : Single;

begin
// Compute the scaling parameters. This is useful if
// the image is not being scaled proportionally.
xscale := (to_x2 - to_x1 + 1) / (from_x2 - from_x1);

yscale := (to_y2 - to_y1 + 1) / (from_y2 - from_y1);

// Perform the reduction.
for to_y := to_y1 to to_y2 do begin
y1 := Trunc((to_y - to_y1) / yscale + from_y1);

y2 := Trunc((to_y + 1 - to_y1) / yscale + from_y1) -

1;

for to_x := to_x1 to to_x2 do begin
x1 := Trunc((to_x - to_x1) / xscale + from_x1);

x2 := Trunc((to_x + 1 - to_x1) / xscale + from_x1) -

1;

// Average the values in from_canvas within
// the box (x1, y1) - (x2, y2).
total_red := 0;

total_green := 0;

total_blue := 0;

for iy := y1 to y2 do begin
for ix := x1 to x2 do begin
SeparateColor(from_canvas.Pixels[ix, iy],

new_red, new_green, new_blue);

total_red := total_red + new_red;

total_green := total_green + new_green;

total_blue := total_blue + new_blue;

end;
end;
ratio := 1 / (x2 - x1 + 1) / (y2 - y1 + 1);

to_canvas.Pixels[to_x, to_y] := RGB(

Round(total_red * ratio),

Round(total_green * ratio),

Round(total_blue * ratio));

end; // End for to_x := to_x1 to to_x2 - 1 loop.
end; // End for to_y := to_y1 to to_y2 - 1 loop.

end;

// Separate a color into red, green, and blue components.
procedure TSizerForm.SeparateColor(color: TColor;

var red, green, blue: Integer);

begin
red := color mod 256;

green := (color div 256) mod 256;

blue := color div 65536;

end;

// Combine red, green, and blue color components.
function TSizerForm.RGB(red, green, blue: Integer):

TColor;

begin
Result := red + 256 * (green + 256 * blue);

end;

End Listing One
10 November 1998 Delphi Informant
Begin Listing Two — EnlargePicture
// Enlarge the picture in from_canvas and place it

// in to_canvas.

procedure TSizerForm.EnlargePicture(

from_canvas, to_canvas: TCanvas;

from_x1, from_y1, from_x2, from_y2: Integer;

to_x1, to_y1, to_x2, to_y2: Integer);

var
xscale, yscale : Single;

sfrom_y, sfrom_x : Single;

ifrom_y, ifrom_x : Integer;

to_y, to_x : Integer;

weight_x, weight_y : array[0..1] of Single;

weight : Single;

new_red, new_green : Integer;

new_blue : Integer;

total_red, total_green : Single;

total_blue : Single;

ix, iy : Integer;

begin
// Compute the scaling parameters. This is useful if

// the image is not being scaled proportionally.

xscale := (to_x2 - to_x1 + 1) / (from_x2 - from_x1);

yscale := (to_y2 - to_y1 + 1) / (from_y2 - from_y1);

// Perform the enlargement.

for to_y := to_y1 to to_y2 do begin
sfrom_y := (to_y - to_y1) / yscale + from_y1;

ifrom_y := Trunc(sfrom_y);

weight_y[1] := sfrom_y - ifrom_y;

weight_y[0] := 1 - weight_y[1];

for to_x := to_x1 to to_x2 do begin
sfrom_x := (to_x - to_x1) / xscale + from_x1;

ifrom_x := Trunc(sfrom_x);

weight_x[1] := sfrom_x - ifrom_x;

weight_x[0] := 1 - weight_x[1];

// Average the color components of the four

// nearest pixels in from_canvas.

total_red := 0.0;

total_green := 0.0;

total_blue := 0.0;

for ix := 0 to 1 do begin
for iy := 0 to 1 do begin

SeparateColor(from_canvas.Pixels[

ifrom_x + ix, ifrom_y + iy],

new_red, new_green, new_blue);

weight := weight_x[ix] * weight_y[iy];

total_red := total_red + new_red *

weight;

total_green := total_green + new_green *

weight;

total_blue := total_blue + new_blue *

weight;

end;
end;

// Set the output pixel's value.

to_canvas.Pixels[to_x, to_y] := RGB(

Round(total_red),

Round(total_green),

Round(total_blue));

end; // End for to_x := to_x1 to to_x2 loop.
end; // End for to_y := to_y1 to to_y2 loop.

end;

End Listing Two

On the Cover
Begin Listing Three — RotatePicture
// Rotate the picture in from_canvas around its center
// through the angle theta in radians placing the result
// in the center of to_canvas.
procedure TSizerForm.RotatePicture(

from_canvas, to_canvas: TCanvas; theta: Single;

from_x1, from_y1, from_x2, from_y2: Integer;

to_x1, to_y1, to_x2, to_y2: Integer);

var
sin_theta, cos_theta : Single;

from_cx, from_cy : Single;

to_cx, to_cy : Single;

sfrom_y, sfrom_x : Single;

ifrom_y, ifrom_x : Integer;

to_y, to_x : Integer;

weight_x, weight_y : array[0..1] of Single;

weight : Single;

new_red, new_green : Integer;

new_blue : Integer;

total_red, total_green : Single;

total_blue : Single;

ix, iy : Integer;

begin
// Calculate the sine and cosine of theta for later.
sin_theta := Sin(theta);

cos_theta := Cos(theta);

// Find the centers of the canvases.
from_cx := (from_x2 - from_x1) / 2;

from_cy := (from_y2 - from_y1) / 2;

to_cx := (to_x2 - to_x1) / 2;

to_cy := (to_y2 - to_y1) / 2;

// Perform the rotation.
for to_y := to_y1 to to_y2 do begin
for to_x := to_x1 to to_x2 do begin
// Find the location (from_x, from_y) that
// rotates to position (to_x, to_y).
sfrom_x := from_cx + (to_x - to_cx) * cos_theta -

(to_y - to_cy) * sin_theta;

ifrom_x := Trunc(sfrom_x);

sfrom_y := from_cy + (to_x - to_cx) * sin_theta +

(to_y - to_cy) * cos_theta;

ifrom_y := Trunc(sfrom_y);

// Only process this pixel if all four adjacent input
// pixels are inside the allowed input area.
if (ifrom_x >= from_x1) and (ifrom_x < from_x2) and

(ifrom_y >= from_y1) and (ifrom_y < from_y2) then
begin
// Calculate the weights.
weight_y[1] := sfrom_y - ifrom_y;

weight_y[0] := 1 - weight_y[1];

weight_x[1] := sfrom_x - ifrom_x;

weight_x[0] := 1 - weight_x[1];

// Average the color components of the four
// nearest pixels in from_canvas.
total_red := 0.0;

total_green := 0.0;

total_blue := 0.0;

for ix := 0 to 1 do begin
for iy := 0 to 1 do begin
SeparateColor(

from_canvas.Pixels[ifrom_x + ix,

ifrom_y + iy], new_red, new_green, new_blue);

weight := weight_x[ix] * weight_y[iy];

total_red := total_red + new_red * weight;

total_green:= total_green + new_green * weight;

total_blue := total_blue + new_blue * weight;

end;
end;

// Set the output pixel's value.
to_canvas.Pixels[to_x, to_y] := RGB(

Round(total_red), Round(total_green),

Round(total_blue));

end; // End if adjacent pixels in bounds.
end; // End for to_x := to_x1 to to_x2 loop.

end; // End for to_y := to_y1 to to_y2 loop.
end;

End Listing Three
11 November 1998 Delphi Informant

12 November 1998 Delphi Informant

Informant Spotlight
Delphi 2, 3, 4 / Windows 95, 98, NT

By Kevin Bluck
Tray Icons
Implementing Them the Delphi Way

No doubt you’ve seen them: those little pictures down on the right side of
the Windows 95/98/NT Taskbar. They’re called Tray Icons, and they pro-

vide a very handy place to stash a program that you want to run quietly in the
background, offering just enough visual feedback to keep track of it without
cluttering up the desktop. Like many aspects of the Windows 95/NT Shell, how-
ever, there is precious little information available on how to implement them.
This article aims to give you all the information you need to fully understand
the tray icon API, and presents a component for implementing them the Delphi
way. (The packaged component and a demonstration application are available
for download; see end of article for details.)
The Windows API for tray icons is remark-
ably small. In fact, it consists of only a single
function: Shell_NotifyIcon. This function,
and its accompanying data record,
TNotifyIconData, are the only tools you’ll use
to manipulate your icons. As is so often the
case with the Windows API, however, this
apparent simplicity is deceptive. As usual, the
devil is in the details.

The Basics
The Shell_NotifyIcon function and its asso-
ciated data types are defined by Inprise (nee
Borland) in the ShellAPI unit. This func-
tion has a simple interface, with only two
arguments:

function Shell_NotifyIcon(dwMessage: DWORD;

lpData: PNotifyIconData): BOOL; stdcall;

The first argument, dwMessage, is straightfor-
ward. There are three things you can do to a
tray icon: add, modify, or delete. Accordingly,
there are three constants defined for this pur-
pose: NIM_ADD, NIM_MODIFY, and
NIM_DELETE. Simply pass the constant
appropriate for the desired operation.

The second argument lpData, is more compli-
cated. This is a pointer to a record defined by
Inprise as TNotifyIconData. Let’s look at this
record’s structure, element by element:

TNotifyIconData = record
cbSize: DWORD;

Wnd: HWND;

uID: UINT;

uFlags: UINT;

uCallbackMessage: UINT;

hIcon: HICON;

szTip: array [0..63] of
AnsiChar;

end;

cbSize must be set to the size in bytes of the
entire record. Because this record is a fixed
size, this is easily accomplished by using the
SizeOf function.

Wnd must be set to the handle of the win-
dow that will receive the tray icon’s notifica-
tion messages. These notifications are primar-
ily of mouse events, such as clicks. We’ll go
into more detail about these later. For now,
just remember that a window handle must be
associated with every tray icon.

uID is provided so your application and
Windows can identify a particular tray icon.
This value is included in the notification mes-
sages sent to the window identified in the Wnd
member. Windows identifies each icon in the

Informant Spotlight
tray by the combination of window handle and this ID. If each
icon is governed by a different window, you can set uID to any
value you wish and ignore it (for all practical purposes). If you
are using one window to control multiple icons, however, you
should assign and keep track of meaningful values in this mem-
ber, as neither you nor Windows would have any other way of
telling which icon is which.

uFlags is used to alert the Shell_NotifyIcon function which of
the three optional data members have valid values. There are
three constants defined for this purpose: NIF_MESSAGE,
NIF_ICON, and NIF_TIP. uFlags may be set to any or all of
these using the or operator. As an example, including
NIF_MESSAGE in uFlags signals Shell_Notif yIcon that the
uCallbackMessage member has a valid value. If this flag is not
included, Shell_NotifyIcon will ignore any information in
uCallbackMessage. Similarly, NIF_ICON corresponds to
hIcon, and NIF_TIP governs szTip.

uCallbackMessage is where you specify the value of the notifica-
tion message sent to the owning window whose handle is in
Wnd. This value can be any that doesn’t correspond to any other
message that might be handled by the window. The best way to
ensure this is to add some constant value to WM_USER. In
fact, just using WM_USER by itself is sufficient. The message
value merely needs to be unique for the window, not the entire
system, or even throughout your application. Remember, this
member is ignored if the NIF_MESSAGE constant is not
included in the uFlags member.

hIcon accepts the handle of the icon image that you wish to
appear in the tray. The easiest way to get at this value in Delphi
is to load your icon into a TIcon object, and use the Handle
property of that object. As before, you must set the NIF_ICON
flag to alert Shell_Notif yIcon that it should interpret the value of
this member. It’s quite possible to modify the tray icon’s appear-
ance after adding it to the tray by submitting a different icon
handle via the hIcon member in conjunction with a
NIM_MODIFY operation. If you’ve noticed “animated” tray
icons before, they work by doing exactly this sort of icon swap-
ping, probably managed by a timer.

szTip is the last member. This is the text of the tooltip, which
appears above most tray icons when you rest the mouse cursor
over the icon for a second or two. It is, like almost every other
string in Windows, a null-terminated string. However, it’s impor-
tant to note that this member is actually defined as a static array
of 64 characters, not a character pointer. This means that after
you allow for the null terminator, a maximum of 63 characters
will fit in the tooltip. This should not be a practical concern for
most developers, but there’s always somebody who wants to
stretch a metaphor a little too far. Like the other two optional
data members, the icon’s tip will not be updated unless the
NIF_TIP flag is set in the uFlags member.

Unicode Applications
If you wish to develop Unicode applications, there are
wide-character versions of these API elements. The wide
13 November 1998 Delphi Informant
version of Shell_NotifyIcon is, predictably,
Shell_Notif yIconW, which takes a data record of type
TNotif yIconDataW. The only difference between the two
record structures is the szTip member, which is an:

array[0..63] of WideChar

in the wide version. All other elements are identical.

Shell_NotifyIcon returns a Boolean value (like most Win32
API functions), which reports if the function succeeded. I’ve
found the errors returned by the GetLastError API function are
remarkably uninformative when Shell_Notif yIcon fails. The
only message I could coax it to reveal was, “A Windows API
function failed.” Gee, thanks for that probing insight,
Windows! Our only consolation is that the tray icon API is
simple enough that the problem is usually not difficult to find.

Mousing Around
We’re still missing one important aspect of tray icons: reacting to
mouse input. The only way a user can interact with a tray icon is
to use the mouse. Accordingly, we need a way to detect these
mouse events. A tray icon is not a window in the normal sense.
It’s governed by the system tray notification area, which is a
special-purpose system window, and over which we have no easy
means of control. Because the tray icon is not a window, it
requires a window handle to be supplied to the Wnd data mem-
ber in the TNotif yIconData record. This gives a place for the sys-
tem tray window to send notification messages when it deter-
mines that mouse activity is occurring over your icon. The value
specified by the uCallbackMessage member is the actual identifier
of the notification message for that icon, so the window that
handles the message can recognize it.

It’s important to understand that the messages sent to the
message handler window are not actual Windows mouse
messages. They don’t include any of the extra information
normally packaged with such messages, such as the mouse
position or the keyboard state. They are simply notification
messages, which tell you only that a mouse event occurred.

Let’s examine the difference between a normal mouse message
and a tray icon notification message. All Windows messages
have three primary components: the message identifier, a two-
byte piece of data commonly known as wParam, and a four-
byte piece of data known as lParam. We’ll compare the
Windows message that’s sent when the left mouse button is
pushed down over a normal window, and the message sent
when the same action occurs over a tray icon. For the normal
window, it receives a message with an identifier equal to the
constant integer value WM_LBUTTONDOWN, a wParam
value encoding the state of the keyboard, and an lParam
encoding the position of the mouse relative to the window’s
client area. The window handling the same event for a tray
icon, however, receives a message whose identifier is whatever
value was specified by the latest valid uCallbackMessage value,
a wParam with a value equal to the uID value for the icon,
and an lParam containing the constant integer value

Informant Spotlight
WM_LBUTTONDOWN. As you can see, all the tray icon
message handling window knows is that the button was
pressed. It has no idea exactly where it was pressed, nor
whether any keys such as S or C were down at the
same time. This pretty much eliminates our ability to respond
to input any more sophisticated than a simple mouse click.

To further illustrate how mouse input is handled by the
message handler window, here’s a code snippet from the
window procedure of a tray icon’s message handler window:

// If the message is a tray notification message...
if Msg.Msg = WM_TRAYNOTIFY then begin

// Check the lParam piece of the message structure to see
// what happened in the tray.
case (Msg.lParam) of

WM_RBUTTONDOWN: ...;

WM_MBUTTONUP: ...;

WM_LBUTTONDBLCLK: ...;

WM_MOUSEMOVE: ...;

These four types of notification messages are basically all the
message handler will receive from the tray icon. There are a
few other obscure ones, such as palette change notifications,
which are probably of no use to any but the most unusual
development efforts. The messages for mouse button down,
up, and double-click come in groups of three — one each for
the left, middle, and right buttons. Mouse move messages also
arrive, but as there is no good way of determining the mouse’s
exact position at the time of the message, the rectangle occu-
pied by the tray icon, or any method of setting the tray icon
to capture all mouse input, it’s difficult to determine when the
mouse moves off the tray icon. Yes, it would be possible to
call GetCursorPos in response to these events, but that won’t
necessarily produce the mouse position at the time the mes-
sage was generated. On a slow system with a rapidly moving
mouse, the mouse position retrieved from GetCursorPos could
be quite far from the point where the message was generated
after it finally works its way through the message queue. At
this time, I have not solved this problem, nor found any
information suggesting an answer. Maybe you can.

Creating a Component
Enough of this messy API stuff. Now that you know what
to do at the Windows level, let’s get started making a com-
ponent that will eliminate the need for you to remember it.

First, let’s define the component’s public interface. There
are a few obvious things we need to provide for the imple-
mentation of a tray icon. An icon seems foremost. Also,
tray icons typically have a tooltip hint and a popup menu
associated with them. Of course, like all visual interface ele-
ments, we’ll want a means to show and hide the tray icon.

A couple of less obvious traits come to mind after a bit of
reflection on how this component will likely be used. We’ll
probably want to be able to check it out at design time,
without running the application to see our handiwork. On
the other hand, when the work is ready to test run from
Delphi, we probably won’t want to see two identical icons
14 November 1998 Delphi Informant
in the tray. Thus, we should provide some means for turn-
ing design-time visibility on and off.

One last thing: Tray-icon applications often start with the
only visible evidence of their execution being the icon.
Furthermore, a tray-icon application often hides itself com-
pletely (except for the tray icon), including hiding its
taskbar button. It would be convenient for the component
user if the component provided some simple means of hiding
the entire application from the desktop and taskbar.

All these considerations lead to the following list of published
properties:

property Hint: string;
property Icon: TIcon;

property PopupMenu: TPopupMenu;

property ShowAtDesignTime: Boolean;

property ShowApplication: Boolean;

property Visible: Boolean;

What About Events?
The only things that happen to tray icons without the appli-
cation’s prior knowledge are mouse events. We can’t use the
standard TControl mouse event types, however, because the
notification-style message just doesn’t provide the same infor-
mation as the full mouse messages that TControl objects
receive. As a result, we’re pretty much limited to mouse but-
ton and click events. Although they’re not likely to be of
much use without position information, we’ll throw in move
events just to be complete.

Here’s the list:

property OnClick: TkbTrayClickEvent;

property OnDoubleClick: TkbTrayClickEvent;

property OnMouseDown: TkbTrayMouseButtonEvent;

property OnMouseMove: TNotifyEvent;

property OnMouseUp: TkbTrayMouseButtonEvent;

Next, we consider the subject of run-time and read-only prop-
erties. Although there are a few “internals” that might surface,
such as the notification message value, it’s hard to imagine
what possible use they could be outside the context of the tray
icon. There’s really no need to expose such pointless detail.

Run-time Methods
The last area of the public interface to consider, the run-time
methods, does lend a few candidates for consideration. Almost
any component that has a visible interface should provide a
Refresh method. Also, the component user may want to invoke
the popup menu directly. These are the methods:

procedure Refresh;

procedure ShowPopupMenu;

There are, of course, many details to implementing a compo-
nent beyond the core functions this component encapsulates.
There are many other excellent references that cover the
minutiae of implementing custom components in Delphi, so
this article will not cover them. Instead, it will concentrate

Informant Spotlight

...

// If the new value is different from the existing value...
if (NewValue <> Self.FVisible) then begin

// If the new value is True, and we are either Designing
// and ShowAtDesignTime is True or else we are not
// designing at all, add the icon to the tray.
if ((NewValue) and

(((csDesigning in Self.ComponentState) and
(Self.ShowAtDesignTime)) or
(not (csDesigning in Self.ComponentState)))) then

Self.NotifyTrayIcon(NIM_ADD);

// Otherwise, delete the icon from the tray.
else

Self.NotifyTrayIcon(NIM_DELETE);

...

end;
...

Figure 1: Code from the private property writer method, SetVisible.

...

// If the new value is different from the existing value...
if (NewValue <> Self.FShowAtDesignTime) then begin

// If we are now designing, and the component is set to
// Visible...
if ((csDesigning in Self.ComponentState) and

(Self.Visible)) then
// If the new value is True, add the icon to the Tray.
if (NewValue) then

Self.NotifyTrayIcon(NIM_ADD);

// If the new value is False, delete the icon from
// the Tray.
else

Self.NotifyTrayIcon(NIM_DELETE);

...

end;
...

Figure 2: Code from the property writer method,
SetShowAtDesignTime.
only on those pieces of the component’s implementation that
directly relate to the specific problem of tray icons.

Shell_NotifyIcon
The implementation of tray icons revolves around the call to
Shell_NotifyIcon. Everything we do in this component will
be in preparation for the moment of that function call. Let’s
outline how the public properties and methods will relate to
that single goal.

The property most directly linked to Shell_Notif yIcon is the
Visible property. Setting this property to True will cause
Shell_NotifyIcon to be invoked with an operation of
NIM_ADD, causing the icon to appear in the tray. As you
might guess, setting it to False will call Shell_NotifyIcon with
an operation of NIM_DELETE, and the icon disappears.
One minor complication to this rather simple scenario is
the action of ShowAtDesignTime. If Visible is set to True at
design time, it must check to see if ShowAtDesignTime is
also True before adding the icon. The property handles the
logic, but the mechanics of calling Shell_NotifyIcon are dele-
gated to another private method, Notif yTrayIcon, which will
be discussed later. Meanwhile, the code snippet in Figure 1
(from the private property writer method, SetVisible) illus-
trates the logic.

ShowAtDesignTime has a similar problem in reverse. If Visible
is False, then it doesn’t matter what ShowAtDesignTime is
being set to. If Visible is True, however, and we are designing
at the moment, then ShowAtDesignTime is responsible for
seeing that the icon is added and deleted. Again, the call to
Shell_NotifyIcon is delegated to NotifyTrayIcon, in the interest
of centralizing that code. Figure 2 shows how the property
writer method, SetShowAtDesignTime, does its thing.

The Hint and Icon properties have a similar problem, i.e. how
to update the visible properties of the tray icon while it’s sit-
ting in the tray. This is exactly the sort of job for which the
NIM_MODIFY operation is intended (live updates to an
existing icon). As you might guess, the properties don’t modi-
fy the icon themselves; they update their internal storage and
call the Refresh method, which calls the now-famous private
NotifyTrayIcon method.

You might think the PopupMenu property is in the same
live-update boat as Hint and Icon, but it’s not. The popup
menu is generated only on request, so it’s sufficient simply
to update its internal storage and leave it at that. The new
menu will be available the next time the ShowPopupMenu
function is called.

Managing the Messages
Next, we consider all the events. A window must be avail-
able to process all the notification messages generated by the
user’s interaction with the icon. How best to provide this
window? We could use the application’s main form, but that
would require hooking that form’s window procedure, a
messy undertaking at best. It seems simplest to generate our
15 November 1998 Delphi Informant
own invisible window, whose sole purpose is to handle those
notification messages, and over whose destiny we have
absolute control. This step eliminates problems with con-
flicting messages and hooks.

Inprise thoughtfully provided a couple of functions to facilitate
this scheme. They are AllocateHWnd and DeallocateHWnd,
found in the Forms unit. AllocateHWnd ’s purpose in life is to
generate a handle to an invisible window, using the window
message-handling procedure you provide. Exactly what we
need! Now, in the constructor, we can get and store a handle
to a window that has nothing better to do than manage our
icon’s messages:

// Allocate invisible window to handle tray notification
// messages.
Self.FWindowHandle := AllocateHWnd(Self.WindowProcedure);

As you can see, this call is trivial. What’s important is the
window procedure we passed. This is where the notifica-
tion messages from the icon are received, and where we
have the opportunity to dispatch them. AllocateHWnd
takes a single TWndMethod argument, a class-member pro-
cedure that itself takes a single TMessage argument. It’s up
to us to provide that procedure. To give you an idea,

procedure TkbTrayIcon.WindowProcedure(var Msg: TMessage);

begin
// If the message is a tray notification message...
if Msg.Msg = WM_TRAYNOTIFY then begin

// Check the lParam piece of the message structure to
// see what happened in the tray.
case (Msg.lParam) of

WM_LBUTTONDBLCLK: Self.DoubleClick(mbLeft);

...

end;
end
// If the message is not a tray notification message,
// then send it to the default window procedure for
// handling.
else begin

Msg.Result := DefWindowProc(FWindowHandle, Msg.Msg,

Msg.wParam, Msg.lParam);

end;
end;

Figure 3: An abbreviated version of our component’s procedure.

Informant Spotlight
Figure 3 shows an abbreviated version of our component’s
procedure.

As we discussed earlier, we first check the message identifier to
verify that this incoming message is a WM_TRAYNOTIFY
message. We ignore all others and send them to default han-
dling, because none of the miscellaneous messages typically
broadcast to every window in the system interest us.
WM_TRAYNOTIFY is a constant we define; it’s not provided
by Windows. Setting it equal to WM_USER is the easiest
thing to do, and perfectly safe. Once we’re satisfied this is
indeed a notification message, we decode the lParam value to
determine which event the message is relating to us, and switch
to an event-dispatch method based on that information.
Because the message-handler window in our component is only
handling a single tray icon, we can safely ignore the uID value
encoded into the wParam data member.

The NotifyTrayIcon Method
Now, with all these supporting tasks worked out, we can final-
ly get to the heart of the matter: the long-awaited call to
Shell_NotifyIcon. It might seem a bit anticlimactic, but this
function is found in only one place throughout the entire
component. This place, of course, is the NotifyTrayIcon private
method. Let’s work our way through it.

First, set up the TNotifyIconData structure:

// Set up the tray icon data structure.
IconData.cbSize := SizeOf(IconData);

IconData.Wnd := Self.FWindowHandle;

IconData.uID := 0;

IconData.uFlags := NIF_MESSAGE or NIF_ICON or NIF_TIP;

IconData.uCallbackMessage := WM_TRAYNOTIFY;

cbSize takes the actual size in bytes of its own structure.
Wnd takes the handle we created for our private message-
handling window in the constructor. uID takes 0, because
we have no need to use it (thanks to our private window,
which handles absolutely nothing other than this icon). We
add all three flags to uFlags, signifying that all three option-
16 November 1998 Delphi Informant
al members will contain valid data. Simply updating all
three every time is much easier than trying to determine
which has changed, and carries no noticeable performance
penalty. The message identifier in uCallbackMessage never
changes; it’s always the WM_TRAYNOTIFY constant
defined in our unit.

Assigning the Icon
Assigning the icon requires a little fancy footwork. There’s really
no point inserting a tray icon without an icon, yet the compo-
nent user might not have assigned an icon to the component,
and may never intend to. If this is the case, we’ll simply use the
Application object’s icon. The Application object always has an
icon, even if one wasn’t assigned by the developer — even at
design time — so it seems the best place to fetch a default. You
should know that at design time, the Application object refers to
Delphi, so the default icon will be Delphi’s, not the icon you
may have assigned in the Project Options. Any icon you assigned
to the Application object will appear at run time. Of course, if
you have assigned an icon to the tray icon component’s Icon
property, that icon will appear at both design and run time:

// If this component has an icon assigned, use that for the
// icon shown in the tray.
if (Self.FIcon.Handle <> 0) then

IconData.hIcon := Self.FIcon.Handle;

else
// Otherwise, use the Application's icon.
IconData.hIcon := Application.Icon.Handle;

The hint string also requires a bit of manipulation. Because
it’s possible to assign a string longer than the maximum
tooltip size of 63 characters, we must ensure the property
value reflects the text of the tooltip if such an overlong
string is assigned:

// If the hint string is defined, then load it into the
// icon data structure. Note that the structure can only
// hold 63 characters, so trim it if necessary.
StrPLCopy(IconData.szTip,Self.FHint,High(IconData.szTip));

Self.FHint := StrPas(IconData.szTip);

Finally, the moment of truth. We call Shell_NotifyIcon:

// Instruct shell to perform operation on tray icon based
// on the Operation value and the IconData structure.
Shell_NotifyIcon(Operation, @IconData);

The result is a component that makes tray icons almost trivial to
implement. You can forget all that Windows API unpleasantness.

How to Use Tray Icons
Now that you have this spiffy component to add tray icons
with the greatest of ease, a few words on how to use them
to maximum beneficial effect are in order. Like all tools,
they can be used for good or evil. It’s important to remem-
ber that the Taskbar tray is a shared resource. Every appli-
cation installed by the user has the opportunity to com-
pete for space in that area. Don’t go nuts adding icons to
the tray, or the useful impact of this excellent metaphor
will be diluted. The user may learn to hate the little guys.

Informant Spotlight
Because the tray is a system resource, it’s appropriate to
use it only to convey information of a global nature, or to
provide an outlet for applications that ought to be con-
stantly monitored without interfering with the user’s other
work. An example of the global sort of icon is the Volume
Control provided by Microsoft. This icon allows the user
to control the volume of every sound generated by every
application. That’s probably worth a 16-by-16 pixel square
of valuable screen real estate. An example of the monitor-
ing kind of icon would be an e-mail indicator. I have one
that came with Netscape Communicator that waves a little
flag whenever I have mail to download. That one is also
worth 256 pixels.

If your icon is of the status-monitor kind, give some seri-
ous thought to how you can present as much information
as possible to the user via its appearance alone. Requiring
users to physically interact with it to get any useful infor-
mation defeats the purpose of a status icon; they should
have a good idea of the application’s status just by looking
at the icon. Animation is particularly effective at directing
user attention to important events. You don’t need a
graphics workstation to do this; perfectly good animation
effects can be achieved with two or three icons swapped
around with a timer.

Generally, a tray icon should support some standard behaviors.
These include:

Mouse hover: Provide a tooltip that, at a minimum, iden-
tifies the purpose of the icon. Ideally, the tooltip text
should expand on the status information provided by the
icon. For example, an e-mail indicator might specify how
many messages are waiting.
Left-click: Provide some sort of popup window to dis-
play further information, or offer basic controls to the
user. Popup windows are preferable to standard win-
dows, because they can be dismissed by clicking else-
where. The Volume Control icon, included with
17 November 1998 Delphi Informant
Windows, provides a good example of such a popup.
This window should appear close to the tray icon, so
the user doesn’t have to hunt for it. If you have no
additional information worth displaying, or the con-
trols you wish to provide are too complex for such a
fleeting popup window, then do nothing on a left-click.
Right-click: Display a popup menu displaying possible
operations for the icon. These operations should always
include an Exit command for users who wish to kill an
application altogether. There’s nothing more irritating
than an application you can’t get rid of. The default
command on this menu usually should be to show the
main form of the icon’s application, providing complete
access to all functions of the application.
Double-click: Execute the popup menu’s default comand.
This should be to show the application’s main form.

Conclusion
The system tray is a compact and powerful interface
metaphor, providing visual feedback and almost unlimited
facility for user interaction into an extraordinarily compact
package. With the information presented in this article, you
can exploit this compelling feature in your own software. See
what you can build — and have fun! ∆

The component and demonstration applications are available
on the Delphi Informant Works CD located in
INFORM\98\NOV\DI9811KB.

Kevin Bluck is an independent contractor specializing in Delphi develop-
ment. He lives in Sacramento, CA with his lovely wife Natasha. He spends
his spare time chasing weather balloons and rockets as a member of JP
Aerospace (http: //www.jpaerospace.com), a group striving to be the first
amateurs to send a rocket into space. Thanks to Jay Hallett for his valuable
assistance in developing the icon component. Kevin can be reached via e-
mail at kbluck@ix.netcom.com.

http://www.jpaerospace.com

18 November 1998 Delphi Informant

In Development
Delphi 3 / Team Development / Object Repository

By G. Bradley MacDonald

Forms=

Dialogs=

Projects=

Data Modules=

TimeAcct=

[C:\PROGRAM FI

Type=FormTempl

Name=Standard

Page=Dialogs

Icon=C:\PROGRA

Description=OK

Author=Borland

DefaultMainFor

DefaultNewForm

Ancestor=

[C:\PROGRAM FI

Type=FormTempl

Name=Dialog wi

Page=Dialogs

Icon=C:\PROGRA

Description=OK

an Inherited

Author=Borland

DefaultMainFor

DefaultNewForm

Ancestor=C:\PR

Figure 1: A sa
The Object Repository
An Easy Tool for Sharing and Standardizing Forms

Delphi’s Object Repository (OR) is a great method for sharing forms and/or
objects among your projects, as well as your developers and their projects.

The OR is only available to the machine on which Delphi is installed. So, each
developer has his or her own copy of the OR that is inaccessible to other devel-
opers. To fully utilize the OR, you may want to consider sharing it among all the
developers in your company.
One of the benefits of a shared OR is stan-
dardization. For example, you might have a
standard header that should be used on all
forms created for your company. Rather than
have each developer put the header on the
forms, you can create a form with the header
saved to the shared OR, making it automati-
cally available to all developers to inherit or
copy. You can even make it the default form
LES\BORLAND\DELPHI 3\OBJREPOS\OKCANCL1]

ate

Dialog

M FILES\BORLAND\DELPHI 3\OBJREPOS\OKCANCL1.ICO

, Cancel along bottom of dialog.

m=0

=0

LES\BORLAND\DELPHI 3\OBJREPOS\OKCNHLP1]

ate

th Help

M FILES\BORLAND\DELPHI 3\OBJREPOS\OKCNHLP1.ICO

, Cancel, Help along bottom of dialog. This is

 Form.

m=0

=0

OGRAM FILES\BORLAND\DELPHI 3\OBJREPOS\OKCANCL1

mple Delphi32.dro file.
when you create a new form or the main
form of new projects. The nice thing about
this is that if you need to change the header
or add some other object later, you simply
change the form in the shared OR. The
changes flow through all projects for all
developers that inherited from this form the
next time they are opened.

You can even take this idea to an extreme;
you might have an entire maintenance pro-
gram, with all the logic on one form in the
OR. When you want a new program to
maintain a particular table, simply inherit
from the form in the OR, make the connec-
tions to the correct DataSet, drop the fields
from the DBExplorer onto the form, and
you’re done. If you use the inherit option
when creating the new form, this would allow
you to update all maintenance programs sim-
ply by updating the one copy of the form in
the shared OR.

What Makes Up the OR?
The OR consists of two main parts: the con-
figuration file and the objects. The configu-
ration file is really nothing more than a plain
text file named Delphi32.dro. This file is the
heart and soul of the OR, and contains the
references to most of the objects shown in
the OR dialog box. When you add or
remove an object from the OR, you are really
adding or removing lines from this file (see

Figure 2: Sample directory structure.

Figure 3: The Environment Options dialog box.

In Development

Before:

[C:\PROGRAM FILES\BORLAND\DELPHI 3\OBJREPOS\OKCANCL1]

Type=FormTemplate

Name=Standard Dialog

Page=Dialogs

Icon=C:\PROGRAM FILES\BORLAND\DELPHI 3\OBJREPOS\OKCANCL1.ICO

Description=OK, Cancel along bottom of dialog.

Author=Borland

DefaultMainForm=0

DefaultNewForm=0

Ancestor=

After:

[\\NTSvr1\ShareName\Delphi\ShrdOBJREPOS\OKCANCL1]

Type=FormTemplate

Name=Standard Dialog

Page=Dialogs

Icon=\\NTSvr1\ShareName\Delphi\ShrdOBJREPOS\OKCANCL1.ICO

Description=OK, Cancel along bottom of dialog.

Author=Borland

DefaultMainForm=0

DefaultNewForm=0

Ancestor=

Figure 4: Sample change of an entry in the OR.
Figure 1). This file, by default, is held in the directory path
\Borland\Delphi 3\Bin. All the objects that ship with Delphi
are held in the directory \Borland\Delphi 3\Objrepos and its
subdirectories (see Figure 2).

Any objects you create and add to the repository don’t have
to be kept in this directory structure. However, if they are to
be shared among your developers, they need to be stored on
a shared drive on the LAN.

How to Share the OR
At the bottom of the Preferences tab of the Environment
Options dialog box the Directory edit box in the Shared

Repository section allows you to specify the directory you
wish to use to locate the shared OR (see Figure 3). When
you enter a directory name in this edit box, Delphi will
create a Delphi32.dro file there for you if it doesn’t exist.
The directory you enter must be a shared directory on the
LAN, perhaps a shared drive on an NT server. Each Delphi
developer must point to the same shared directory. This is a
case when you should consider using a UNC name (i.e.
\NTServer\ShareName\Delphi\SharedObjRepos) rather
than the standard drive:directory naming style (i.e.
X:\Delphi\SharedObjRepos).

The reason for the UNC convention is that it references a
server and does not depend on what drive letter you have
assigned. If you use the drive:directory method, each
developer must have the same drive letter assigned to this
19 November 1998 Delphi Informant
same share. This is an important point. If you use the
drive:directory format and a developer connects to the
same server and directory using a different drive letter,
they won’t be able to access the objects in the shared OR
because of the hard-coded reference to the drive letter in
the Delphi32.dro file.

Issues of Sharing
The one drawback with simply changing the shared reposi-
tory location in the Environment Options dialog box is
that you lose access to some of the objects that install with
Delphi. An easy solution to this is to copy the entire
ObjRePos directory structure from the default Delphi
install to the new shared directory before changing the
shared repository location in the Environment Options
dialog box. Then, modify each entry in the Delphi32.dro
file to point to the new location (see Figure 4). This allows
you to share not only your own objects, but those installed

In Development
with Delphi as well. I prefer this method because it provides
the most flexibility.

The main concern with sharing the OR is that if a change is
made, it’s made to all developers who are using the shared
OR. All projects for all developers that have inherited from
an object in the OR, which is changed, will be affected.
Remember that objects that have been copied from objects
in the OR are not affected by changing the original object in
the OR. The change could be something as simple as a
developer changing the default new form or default main
form for the shared OR. If one developer changes which
form will be the default for all new forms, it affects all users
of that shared repository. This change is then forced on all
other developers.

While this may be a good way to make global changes, it
can be very confusing — and dangerous. For example,
developer A changes the default new form before going
home on Monday, and developer B comes in Tuesday morn-
ing and tries to add a new form to his or her project.
However, instead of getting the traditional blank form,
developer B gets whatever form developer A selected as the
default. If developer B doesn’t know what happened, they
may lose valuable time trying to determine what is wrong
with Delphi. (In my early tinkering with sharing the OR,
this exact problem occurred, resulting in a call to Inprise’s
support line.)

As the preceding example shows, developers that share a
LAN-based OR have to be a little more careful about the
changes they make. There are times when, as a developer,
you want to try out an idea and don’t want to expose other
developers to any problems that it may cause. In this case,
you could simply blank out the Directory edit box in the
Shared Repository section on the Preferences tab of the
Environment Options dialog box. This would then point
you to the original OR on your machine, and any changes
that you make there will only affect you. At this point, you
can perform your testing, and when you’re finished, you can
point back to the shared OR and apply the changes there. I
find this useful, as it gives me a ‘sandbox’ in which to try
things out before I change the shared OR.

Conclusion
Sharing the Object Repository is easy, and can be a great tool
for standardization. It does require that a little more care be
taken on the part of the developers when updating and using
it. However, the small amount of risk is worth the immense
benefits that can be realized by sharing forms and other
objects among all your developers and across your company. ∆

G. Bradley MacDonald is the Technology Planner at the Liquor Distribution Branch
of British Columbia, where he is responsible for supporting Delphi and AS/400
developers. He can be reached at Bradley_MacDonald@LDB.GOV.BC.CA
or Bradley_MacDonald@BC.Sympatico.CA.
20 November 1998 Delphi Informant

21 November 1998 Delphi Informant

DBNavigator
Aliases / Database Components / BDE

By Cary Jensen, Ph.D.
Delphi Database Development
Part III: The Database Component

In last month’s “DBNavigator,” we considered the role of the BDEDataSet com-
ponents. This month’s installment continues our extended series on database

topics with an introduction to the Database component.
The Database component is responsible for
providing BDEDataSet components with
information about the nature and location of
your data. (TTable, TQuery, and TStoredProc
objects are all BDEDataSet components.)
Specifically, a Database component stores the
location of the data (whether it’s local or
remote) and what driver to use to access this
data. It’s also responsible for holding configu-
ration information pertaining to the data
access. For example, a Database component
can define parameters that control how data
is accessed and updated.

There is another, equally important role the
Database component plays. It represents your
connection to a remote server in a client/serv-
er application. Using TDatabase methods, you
can connect to, or disconnect from, a server;
start, commit, and rollback transactions; and
store schema information about the files of
your database. (Schema information includes
data about your database, including the tables,
fields, indexes, and so forth.)

A Database component plays a similar role
with respect to local data — those file server-
based applications that use Paradox or
dBASE tables. However, these tables are con-
trolled directly by the BDE (Borland
Database Engine). Consequently, no true
login connection is required, all transactions
are controlled directly by the BDE, and local
databases don’t store schema information
that needs to be read by the database.
(Because the BDE controls all access to local
tables, schema information is always up-to-
date, i.e. it doesn’t need to be explicitly read
from a remote server.)

Global vs. Local Aliases
You control which Database a particular
BDEDataSet uses by assigning an alias to the
BDEDataSet’s DatabaseName property. An
alias is either the DatabaseName property of
a Database component, or the name of a
configured database within the BDE config-
uration file. (You modify your BDE configu-
ration using the BDE Administrator.) An
alias that references a database configuration
from the BDE is referred to as a “global
alias,” and one that references the
DatabaseName property of a Database com-
ponent is referred to as a “local alias.”

(Note: Technically speaking, there is a third
value that can be assigned to a BDEDataSet’s
DatabaseName property. If your data is
stored in local tables, you can assign the path
of your data files to the DatabaseName prop-
erty. While this value is not a true alias, it’s
more similar to a global alias than to a local
alias, in that such a value uses the parameters
defined on the Configuration page of the
BDE Administrator based on the data type
of the file you’re accessing.)

Global aliases. A global alias gets its name
from the fact that it’s available to any appli-
cation that can use the BDE. For example,
any developer using Delphi, C++Builder, or
Data Gateway for Java can use a global alias
for the access to data. DBDEMOS and
IBLOCAL are examples of global aliases.

DBNavigator
They’re configured during Delphi’s installation, and refer to
sample data files used by many Delphi sample projects.

An application that uses a global alias is configurable outside
of the program logic in your application. Specifically, it’s possi-
ble to write an application that’s completely unaware of the
details of the data location, driver type, or connection parame-
ters. Such applications are easily scalable, i.e. you can change
the data location, type, and parameters without re-compiling
your application. For example, an application that makes use
of a global alias can be designed and tested on a stand-alone
machine, yet be deployed in a client/server environment with-
out being re-compiled. It’s only necessary to update the data-
base configuration for the alias using the BDE Administrator.

Local aliases. In contrast, local aliases are available only to the
application in which the corresponding Database component
appears. Local aliases are created by adding a Database com-
ponent to one of your forms or data modules, and then set-
ting the Database’s properties to identify the driver and data
access parameters.

Normally, you add a Database component that defines a local
alias at design time. However, it’s perfectly valid, although
typically more work, to add one programmatically at run
time. This can be done by calling the TDatabase class’ con-
structor, and then configuring the properties of the Database
object the constructor returns.

Once a Database has been created, the DatabaseName proper-
ty of the Database component is visible to all objects within
the application. Specifically, the DatabaseName property is
stored in the global name space, making this alias visible even
to code that appears in units that don’t use the unit in which
the Database component is referenced (either as a variable or
a member field of type declaration).

While a global alias has the advantage of being configurable
outside of your application, local aliases also have an important
advantage. Using a local alias, your code can control all aspects
of the connection. For example, it can be written to define the
database driver and access control parameters based on infor-
mation determined at run time. To determine the location of
the data, for instance, your application could read an .INI file
on a shared network drive, or it could test the location of the
application’s executable (using the Application.ExeName
method, or the ParamStr(0) function call).

These two alias types — global and local — aren’t mutually
exclusive. Indeed, it’s not uncommon for the data access
information used by a BDEDataSet to come from both alias
types at the same time. Specifically, a Database (whose
DatabaseName property constitutes a local alias) can be con-
figured to read its initial configuration information from a
global alias. This is often done for one of two reasons:

A local Database can selectively override parameters stored
in a global alias. This permits your application to leverage
the configuration flexibility provided through the BDE
22 November 1998 Delphi Informant
configuration, while still maintaining final control over
particular parameters. A very simple case of this involves
using the parameters stored in a global alias, and then
adding or changing one or more parameters, such as a
password, in the Database. (Note that a password can’t be
stored in a BDE configuration file.)
The second reason for combining global and local aliases
is to provide a component for controlling transactions and
server connections. Such a local Database may use all the
configuration information from a global alias, while pro-
viding a convenient component for starting, committing,
and rolling back transactions.

Configuring global aliases using the BDE Administrator is
beyond the scope of this article. For information on configur-
ing global aliases, please refer to the BDE Administrator’s
online Help. Configuring local Database components, on the
other hand, is the topic of the remainder of this article.

Databases vs. Aliases
It’s important to make a clear distinction between a Database
component and an alias. A Database component is an
instance of the TDatabase class. Every BDEDataSet requires a
Database component to define and control its access to data.
An alias, by comparison, defines either an existing Database
component, or a set of parameters that will be applied to an
automatically created Database component.

When you attempt to activate a BDEDataSet, it first determines
whether it’s connected to a Database (via the DatabaseName
property). If the DatabaseName property has been assigned a
local alias (the DatabaseName property of an existing Database
component), the BDEDataSet first checks whether this
Database is open. If the Database is open, the BDEDataSet
attempts to open itself. If the Database isn’t open, the
BDEDataSet must first open the Database before opening itself.

When the first BDEDataSet making use of a given global alias
attempts to open, it begins by creating an instance of the
TDatabase class. The parameters used for this Database are
drawn from the BDE configuration based on the global alias
name. As each additional BDEDataSet that uses the same glob-
al alias attempts to open, each will note the Database created by
the first BDEDataSet to open, and will attach to that Database.

Configuring a Local Alias
As mentioned earlier, a local alias is one associated with a
Database component in your application. Although it doesn’t
matter how this component is created, the typical technique is
to add a Database to a form or data module, and then use the
Database Editor dialog box to configure the Database. This
technique provides for the automatic creation of the Database
component (as part of the creation of the form or data mod-
ule on which it appears), as well as simplifying the process of
configuring a BDEDataSet to use the Database.
This process is demonstrated in the following steps:
1) Create a new project.
2) Add a Data Module by selecting File | New from Delphi’s

Figure 1: The Database Editor.

Figure 2: The Database Editor defining a local alias.

DBNavigator

Figure 3: A sample database application that uses a local alias.
main menu, and then double-clicking the Data Module
Wizard on the New page of the Object Repository.

3) Add a Database component to the Data Module.
4) Display the Database Editor (see Figure 1) by double-

clicking on the Database, or by right-clicking the
Database and selecting Database Editor.

5) At Name enter temp. This value is the local alias name.
6) Move to the Driver name drop-down list (we’re not going

to use the Alias name drop-down list in this example).
Using the Driver name drop-down list, select STANDARD

(the driver is used with Paradox and dBASE tables).
7) Click the Defaults button. This loads the Parameter overrides

list box with default parameters based on the BDE configu-
ration file. Because a very simple local alias is being created,
there are only three parameters: PATH, DEFAULT DRIVER, and
ENABLE BCD (Binary Coded Decimal).

8) Leave DEFAULT DRIVER and ENABLE BCD with their default
values. For PATH, enter the fully qualified directory path
where Delphi stored its sample Paradox and dBASE tables.
In Delphi 4 this path is C:\Program Files\Common Files\
Borland Shared\Data. In all previous versions, it’s the
Demos\Data directory under the directory in which Delphi
is installed. For example, in Delphi 3 this path is
C:\Program Files\Borland\Delphi3\Demos\Data. When
you’re done, your Database Editor should look like that
shown in Figure 2. Click OK to accept the dialog box.

9) Ensure the data module is created before the main form.
To do this, select Project | Options to display the Project
Options dialog box. Drag DataModule2 to the top position
in the Auto-create forms list. Alternatively, you can simply
edit the project (.DPR) file, moving the call to CreateForm
for the data module to the line before the call to the form’s
CreateForm statement. (Note: Only data modules can
appear before the main form in the Auto-create forms list.
By definition, the main form is the first auto-created form.)

10)Continuing with the building of your main form, return
to Form1, and add a DBNavigator and DBGrid compo-
nent to it. Set the DBNavigator’s Align property to alTop,
and the DBGrid’s Align property to alClient.

11)Add one DataSource and one Table to the form. Set the
DataSource’s DataSet property to Table1. Set the
DataSource property of both the DBNavigator and the
DBGrid to DataSource1.

12)We’re now ready to configure the Table to use the local
alias. Set the Table’s DatabaseName property to temp
(the DatabaseName property of the Database you
entered in step 5). Next, set the Table’s TableName
property to customer.db. Finally, set the Table’s Active
property to True.

Run the application. Your form should look as shown in
Figure 3.

When you run this application, the data module is created
first, making the Database available. Then, the form is creat-
ed, which causes the creation of the objects that have been
placed on it. Once these objects are created, their properties
are loaded, including the Table’s Active property. Before the
23 November 1998 Delphi Informant
Table can open, it locates the Database referenced using the
local alias, and attempts to open it. Once the Database is
opened, the Table can attempt to open itself. Once the Table
is open, the DataSource informs the DBNavigator and the
DBGrid to read the data and paint themselves appropriately.

Experienced Delphi database developers who read the previ-
ous description will no doubt be wondering why I didn’t place
the DataSource and the Table on the Data Module along with
the Database. The answer is that I wanted to demonstrate that

DBNavigator

Figure 4: The Database Editor with the password stored.
the local alias was accessible from Table1’s Name drop-down
list, even though the unit in which Form1 is defined doesn’t
use the unit in which the data module is defined. If we had
placed the Table and/or the DataSource on the Data Module,
Form1’s unit would be required to use DataModule2’s unit.

Controlling Database Parameters at Run Time
In the preceding example, the path to the data was hard coded.
As mentioned earlier, it’s possible to define the parameters of a
Database at run time. To demonstrate this, modify the example
project you’ve created by following these steps:
1) At Form1, set Table1’s Active property to False.
2) At the Data Module, double-click the Database to display

its Database Editor. Click the Clear button to erase the
parameters from the Parameter overrides list box.

3) At Form1, select Form1 from the Object Inspector. From
the Events page, double-click the OnCreate field to gener-
ate an OnCreate event handler for the form.

4) Edit the OnCreate event handler to look like the following:

procedure TForm1.FormCreate(Sender: TObject);

begin
DataModule2.Database1.Params.Clear;

DataModule2.Database1.Params.Add(

'PATH=D:\Program Files\Common Files' +

'\Borland Shared\Data');

DataModule2.Database1.Params.Add(

'DEFAULT DRIVER=PARADOX');

DataModule2.Database1.Params.Add('ENABLE BCD=FALSE');

Table1.Open;

end;

5) Finally, with Form1 selected, select File | Use Unit to dis-
play the Use Unit dialog box. Select Unit2 from this list.
Note that although the local alias, temp, is available to the
Table without using Unit2, the Database reference
(Database1) isn’t available to Unit1 unless it’s using Unit2.

6) Press 9 to run the project. Again, your application
should look like the one shown in Figure 3.

Although the actual parameters added to the Database’s
Params property were hard coded in this example, it would
have been perfectly acceptable to base these parameters on
information determined at run time.

Creating a Local Alias Based on a Global Alias
Earlier in this article you learned that local aliases can be
based on global aliases. The following steps demonstrate how
this is done:
1) Create a new project.
2) Add a Data Module to the project.
3) Add a Database component to the Data Module.
4) Display the Database Editor for the Database component.
5) Enter csdemo as Name. This value is the local alias name.
6) Move to the Alias name field and select IBLOCAL. When

you use the Alias name field, you’re specifying that the
parameters of your local alias will be based on the
named global alias. If there are any parameters you
want to add or override, you specify these using the
Parameter overrides list box.
24 November 1998 Delphi Informant
7) In this case, we’ll be adding the password to the local
alias. To do this, enter the following line into the
Parameter overrides list box:

PASSWORD=masterkey

8) Because the password is now stored with the Database
component, it’s no longer necessary to prompt the user
for the password. To disable the display of the Database
Login dialog box, remove the check from the Login

prompt check box of the Database Editor. The Database
Editor should look as shown in Figure 4.

9) The remaining steps of this example are identical to
steps 9 through 12 in the example given under the sec-
tion “Configuring a Local Alias.” Consequently, those
steps aren’t repeated here. However, there is one differ-
ence. Instead of adding a Table, use a Query compo-
nent. To configure the Query, set its DatabaseName
property to csdemo, and its SQL property to the follow-
ing SQL statement:

SELECT * FROM CUSTOMER

10)Set the Query’s Active property to True. The query will
execute, and the returned records will be displayed in the
DBGrid.

Press 9 to run the project. You’ll notice the main form is
displayed without prompting for the password. In this case,
the local alias uses all parameters of IBLOCAL, which identify
where the data is located and what driver to use. The
Database component, however, adds the password, which is
used to establish a connection to the server when the Query
component attempts to execute.

This example demonstrates how to override global alias para-
meters with a local alias. However, it’s rarely wise to permit
unchallenged access to a database server. Consequently, this
technique is normally only used during development, where
you would like to avoid having to enter the password each
time you test your application. Before deploying such an
application, you should return to the Database Editor dialog

DBNavigator
box and remove the password parameter from the Parameter

overrides list box, and enable the Login prompt check box.

Conclusion
Database components are used to customize access to a data-
base, as well as to control database connections and transac-
tions. This article demonstrated how to configure a
BDEDataSet component to use a Database component, pro-
viding you with control over access to the underlying data.

In next month’s “DBNavigator” we will take an in-depth look
at Data Modules, including when you should use them, and
when they should be avoided. ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based
database development company. He is co-author of 17 books, including
Oracle JDeveloper [Oracle Press, 1998], JBuilder Essentials
[Osborne/McGraw-Hill, 1998], and Delphi in Depth [Osborne/McGraw-Hill,
1996]. He is a Contributing Editor of Delphi Informant, and is an interna-
tionally respected trainer of Delphi and Java. For information about Jensen
Data Systems’ consulting or training services, visit http://idt.net/~jdsi or
e-mail Cary at cjensen@compuserve.com.
25 November 1998 Delphi Informant

http://idt.net/~jdsi

26 November 1998 Delphi Informant

Sound+Vision
Graphics Programming / Gaming

By Peter Dove
The Camera Never Lies
Delphi Graphics Programming: Part VI

I t’s here! This is the long-awaited finale of the “Delphi Graphics Programming”
series that started in January, 1997. In this series, we watched the development

of the TGMP 3D-rendering engine, from its inception through several phases of
growth (see Figure 1). We’re almost done.
In this final installment, we’ll cover how to
get a camera coordinate system working,
adding animated textures, and finally, how
to include foreground pictures, i.e. those
that allow you to view your 3D objects
through a window frame, a cockpit, etc.
We haven’t been able to include everything
we would have liked, but we hope that
what follows will be enough to send you on
your way to developing your own version.

Smile Please
So far, TGMP allows you to add an object
and move it around in 3D space.
Figure 1: The TGMP application in action.
Unfortunately, you’re only able to stand at
the center of your 3D universe and look
ahead. You can not turn around and see
what’s behind you, you can not look up or
down, and you can not decide to have a
walk around. Rather limiting, one would
think.

To remedy this situation, we’ll be adding a
camera coordinate system; we are adding
the concept of having a camera that can be
moved anywhere in the system by posi-
tioning it at coordinates X, Y, and Z, or
rotated about its X, Y, and Z axes.

Let’s start by adding two variables to the
public section of the TGMP component:

CameraPosition: TPoint3D;

CameraRotation: TPoint3D;

Also, we need to add a section to the
TObject3D record to store the camera coor-
dinates for all the polygons:

PolyCamera: array[0..MAXPOLYS] of TPolygon;

Adding the camera coordinate functionality
works similarly to the way we added the
world coordinate system. We created a new
method named WorldToCamera, which takes
the objects after the LocalToWorld procedure
has processed it.

Sound+Vision

procedure TGMP.SetForegroundBitmap(Value: TPicture);

begin
FForegroundBitmap.Assign(Value);

end;

function TGMP.GetForegroundBitmap: TPicture;

begin
result := FForegroundBitmap;

end;

procedure TGMP.SetEnableForeground(Value: Boolean);

begin
FEnableForeground := Value;

Paint;

end;

Figure 2: These three private methods support
ForegroundBitmap and EnableForegroundBitmap.

procedure TGMP.CopyForeground;

var
X, Y : Integer;

PixelColor : Word;

begin
for X := 0 to FForegroundDib.Width - 1 do
for Y := 0 to FForegroundDib.Height - 1 do begin

PixelColor := FForeGroundDiB.GetPixel(X,Y);

if PixelColor <> 0 then
FDib.SetPixel(X, Y, PixelColor);

end;
end;

Figure 3: The CopyForeground method is called every time the
frame is rendered.
The explanation of how it works is simple. Imagine you’re
standing at the center of the 3D universe. You have an
object directly in front of you. Now, imagine that the
camera (you) moves to the right. If an outside observer
saw a snapshot of the scene before and after you moved,
they would not be able to tell whether it was the camera
(you) that had moved or the object itself. You get the same
picture if you move the camera to the right by five units
or move the object to the left by five units. The trick of
making it look as though we have a camera is based on
this principle.

The WorldToCamera procedure achieves the trick of cam-
era movement in stages (see Listing Four on page 30).
First, the procedure takes the variable CameraPosition and
subtracts its values from that of all the polygons.
Remember that if you move the camera five units to the
right (i.e. CameraPosition.X is 5), the object looks as
though it has been moved five units to the left.

Second, the procedure takes the CameraRotation variable
and applies the inverse rotations to all the polygons. If,
while you look at this page, you rotate your head to the
right, it looks as if the page has rotated to the left.

Last, we must remember to apply the same tricks to the
light source as well; it also has a position and a direction.

We also need to change two methods for this to work. The
first one is RemoveBackfacesAndShade. In this method, we
need to change all references to PolyWorld to PolyCamera.
The other method we need to change is RenderNow. This
method must have the statement:

WorldToCamera(Object3D);

inserted into every section of the case statement following
the statement:

LocalToWorld(Object3D);

Also, every reference to Object3D.PolyWorld[x] must be
replaced with Object3D.PolyCamera[x] for the correct poly-
gons to be rendered.

Through the Eye of a Needle
Foreground pictures are nearly as useful as background pic-
tures. By using a foreground picture, you can make your
display show the controls of a cockpit in an airplane, or
make it seem as though you’re looking through a keyhole.

To begin, we need to create two new design-time proper-
ties. One is named ForegroundBitmap, which is of type
TPicture. This property allows you to load a bitmap. The
second property, EnableForegroundBitmap, tells the render-
ing engine whether to include the foreground in its final
image. Both properties need to go into the published sec-
tion of TGMP:
27 November 1998 Delphi Informant
property EnableForegroundBitmap : Boolean

read FEnableForeground write SetEnableForeground;

property ForegroundBitmap : TPicture

read GetForegroundBitmap write SetForegroundBitmap;

The two private members for the properties in the following list-
ing should be placed into the private section of TGMP. Also list-
ed is a support private member named FForegroundDIB, which
allows a quicker way of putting the bitmap onto the screen:

FForegroundDIB : TDib16Bit; // Stores foreground bitmap.
FForegroundBitmap : TPicture; // Holds foreground bitmap.
FEnableForeground : Boolean; // Is foreground enabled?

The three private methods that support the new properties
are listed in Figure 2, and are straightforward. The last
method, SetEnableForeground, changes the private member
FEnableForeground, then calls the Paint method to ensure
the display keeps up to date with the current state.

The following statements must be added to the Create con-
structor to initialize the new foreground properties:

{ ****** Added to support foreground properties ****** }

// Create the foreground Bitmap.
FForegroundBitmap := TPicture.Create;

// Create the foreground DIB.
FForegroundDib := TDib16Bit.Create(ViewHeight, ViewWidth);

{ ****** End of support for foreground properties ****** }

A new method, CopyForeground, is also created, and is called
every time the frame is rendered. CopyForeground works in a
simple manner (see Figure 3). By the time CopyForeground

Figure 4: A
sample image
with a fore-
ground.

procedure TGMP.Paint;

var
tmpBitmap : TBitmap;

begin
inherited;
{ New ClearBackPage using the DIB class's methods. Notice

that it now passed a 16-bit color value rather than
a TColor. }

FDib.ClearBackPage(CalculateRGBWord(FColor));

{ Create a bitmap. }
tmpBitmap := TBitmap.Create;

{ Assign the Foreground's Handle to it. }
tmpBitmap.Handle := FForegroundDIB.GetHandle;

{ Stretch it to the full window. }
tmpBitmap.Canvas.StretchDraw(

ClientRect, ForegroundBitmap.Bitmap);

{ Release the handle and free the temporary bitmap. }
tmpBitmap.ReleaseHandle;

tmpBitmap.Free;

{ Copy background buffer to main screen. }
FlipBackPage;

end;

Figure 5: The customized Paint method.

Sound+Vision
is called, the bitmap you selected as the foreground is stored
in FForegroundDIB. The scene has been rendered into
FDIB. TGMP chooses black as its invisible color. It now
scans each pixel in the FForegroundDIB and transfers it to
FDIB. If the method comes across the color 0 (Black) in
FForegroundDIB, it doesn’t transfer it to the rendered image.

Figure 4 shows a sample with a foreground image. As you can
see, the image has a picture of a frame with a kind of gun scope
in the center. If you were to choose this as a foreground image,
everything but the black would be transferred onto the window.

There are two more methods that need to be changed to
complete the implementation of the foreground bitmap.
The first is the WMSize method. This has two lines that
need to be added to update the height and size of the
FForegroundDIB:

FForegroundDIB.Free;

FForegroundDIB := TDib16Bit.Create(ViewHeight, ViewWidth);

The other method is Paint (see Figure 5). To transfer the
newly chosen background bitmap into FForegroundDIB
from FForegroundBitmap, we to need to create a temporary
bitmap in the shape of the local variable tmpBitmap. First,
we create the temporary bitmap, then we assign the handle
of the FForegroundDIB to it. This allows us to use the
methods belonging to TBitmap to write onto the
FForegroundDIB. We then use the StretchDraw method of
TBitmap to draw the ForegroundBitmap into
FForegroundDIB. After we have finished with TBitmap, we
release its handle. Releasing the handle this way does not
destroy it. We then free it, and the work is done.

Animated Textures
Wouldn’t it be great to have a ball of fire with animated
flames? That’s what got me thinking we should create animat-
ed textures. There are many uses; one that springs to mind is
spooling video onto 3D objects. We’ll implement an animat-
ed texturing algorithm that is pretty simple, but we’re sure
you’ll have fun with it. The great thing about this feature is
that we get involved with dynamic memory allocation.
28 November 1998 Delphi Informant
For this to work, we need only one private variable,
FAnimationList. Its declaration follows, and should be
placed in the private section of TGMP:

FAnimationList: TList; // List of all animation frames.

We’re also going to use three methods to support animated
textures. Their declarations should be placed in the public
section of TGMP (see Figure 6). Following each method is
a section explaining its functionality.

AddAnimationFrame allows the programmer to add a single
animation frame to FAnimationList. Remember that with this
rendering engine, your bitmap size for textures is 128- by-
128 pixels. The AddAnimationFrame declares a pointer to
TBitmapStorage. The first line of the method dynamically cre-
ates new memory exactly the size of TBitmapStorage, and puts
the pointer to it in pBitmapStorage.

We now add that pointer to FAnimationList. (Remember
that TList simply holds a list of pointers.) After adding the
pointer to FAnimationList, the next loop copies all the pixels
from the parameter of AddAnimationFrame, Bitmap, into
BitmapStorage. Notice how we access the TBitmapStorage
array from the pointer:

pBitmapStorage^[x,y]

The ^ symbol dereferences the pointer, i.e. it tells the com-
piler to treat pBitmapStorage as type TBitmapStorage instead
of as a pointer to a TBitmapStorage structure. You may have
noticed that we’re copying the bitmap in upside down (note
[127-y]). This is because DIBs are stored upside down.

Our next method is DeleteAnimationFrame, which accepts
one parameter named Frame (see Figure 7). This tells the
method which frame to delete from FAnimationList. Again,
we declare a local variable named pBitmapStorage as a point-

procedure TGMP.AddAnimationFrame(Bitmap : TBitmap);

var
X, Y : Integer;

pBitmapStorage : ^TBitmapStorage;

begin
{ Create a dynamic TBitmapStorage. }
New(pBitmapStorage);

{ Add it to the animation list. }
FAnimationList.Add(pBitmapStorage);

{ Fill in the data. }
for X := 0 to 127 do
for Y := 0 to 127 do
pBitmapStorage^[x,127-y] :=

CalculateRGBWord(Bitmap.Canvas.Pixels[X,Y]);

end;

Figure 6: Calling three methods that support animated textures.

procedure TGMP.DeleteAnimationFrame(Frame: Integer);

var
pBitmapStorage : ^TBitmapStorage;

begin
{ Check to see the it is a valid frame. }
if (Frame < 0) or (Frame > FAnimationList.Count) then

Exit;

{ Get a pointer to the TBitmapStorage. }
pBitmapStorage := FAnimationList[Frame];

{ Dispose of the memory. }
Dispose(pBitmapStorage);

{ Decrease the list. }
FAnimationList.Delete(Frame);

end;

Figure 7: The DeleteAnimationFrame method accepts the Frame
parameter.

Sound+Vision

{ Section 1 - to be used on the OnShow event of the form. }
{ Load animation frames. }
Bitmap := TBitmap.Create;

for X := 1 to 33 do begin
Bitmap.LoadFromFile(ExtractFilePath(

Application.ExeName) + 'Frame' + IntToStr(X) + '.bmp');

GMP1.AddAnimationFrame(Bitmap);

end;
Bitmap.Free;

{ Section 2 - to be used in the Timer event. }

var
AnimFrame: Integer = 0;

begin
if Start1.Checked then begin

GMP1.SetCurrentBitmapWithAnimationFrame(AnimFrame);

Inc(AnimFrame);

if AnimFrame > 32 then
AnimFrame := 0;

end;

Figure 8: A simple example of calling animated frames.
er to TBitmapStorage. The method checks that the Frame
parameter is valid, then assigns from FAnimationList the nth
(Frame) pointer. It then calls the Dispose procedure, which
releases memory to the exact size of TBitmapStorage. The
nth (Frame) entry in the FAnimationList is also deleted.

SetCurrentBitmapWithAnimationFrame, the last method in
this trio, is easy to figure out:

procedure TGMP.SetCurrentBitmapWithAnimationFrame(

Frame: Integer);

begin
{ Make sure the frame is a valid one. }
if (Frame < 0) or (Frame > FAnimationList.Count) then

Exit;

{ Copy the memory of the animation frame
into FCurrentBitmap. }

CopyMemory(@FCurrentBitmap, FAnimationList[Frame],

SizeOf(TBitmapStorage));

end;

CurrentBitmap is the texture mapped onto the polygons
as they are rendered. So, to create animated textures,
we only need to change the CurrentBitmap every frame.
Obviously, we need a quick way of doing this. The
SetCurrentBitmapWithAnimationFrame method achieves
this by first making sure the Frame parameter is valid.

Then, it uses the procedure CopyMemory, which accepts
three parameters: The first is the destination, and is of
type Pointer. I have this as @FCurrentBitmap, which
means “memory address of FCurrentBitmap.” The second
29 November 1998 Delphi Informant
parameter is the source, the place from which we want to
copy. This parameter is also of type Pointer. I’ve used
FAnimationList[Frame], a pointer to the TBitmapStructure
of the nth (Frame) frame. The last parameter is the
amount (in bytes) of the memory to copy, which in our
case is SizeOf(TBitmapStorage). The SizeOf function
returns the size of an object/record/structure in bytes.

To show you how to use animated textures, we’ve included
a snippet from the demonstration application (see Figure
8). The first section shows how to set up the animation,
and the second section shows how to animate the textures.

Conclusion
That’s it! You now have a basic 3D-rendering engine. Of
course, it can be made to go faster and have much more func-
tionality, but you’re on the right path to take it further your-
self. This series took us through the evolution of the TGMP
rendering component using basic techniques, such as proper-
ties, events, and property editors, as well as more advanced
techniques, including device-independent bitmaps, sprites, and
memory management. We covered a lot in this series, so I’m
sure you will find many of the techniques useful for your own
projects. You should also be convinced that Delphi is worthy
of respect as a games and graphics programming language. ∆

[Note: Parts 1 through 5 of this series were published in the
following issues of Delphi Informant (all in 1997): January,
February, March, April, and July.]

The entire sample application referenced in this article is avail-
able on the Delphi Informant Works CD located in
INFORM\98\NOV\DI9811PD.

Peter Dove is Managing Director of Kortex Systems Limited, based in the
United Kingdom. Kortex Systems Limited has a range of software devel-
opment services that can be seen at http://www.kortex.co.uk. Peter can
be e-mailed at peterd@kortex.co.uk.

http://www.kortex.co.uk

Sound+Vision
Begin Listing Four — WorldToCamera procedure
procedure TGMP.WorldToCamera(var AnObject: TObject3D);

var
X : Integer;

begin
{ Loops though all polygons, transferring them to

PolyCamera. }
with AnObject do begin

for X := 0 to NumberPolys -1 do begin
{ Additional optimizations. }
with PolyCamera[x] do begin

{ Subtract camera coordinates from
world coordinates. }

Point[0].X :=

PolyWorld[X].Point[0].X - CameraPosition.X;

Point[0].Y :=

PolyWorld[X].Point[0].Y - CameraPosition.Y;

Point[0].Z :=

PolyWorld[X].Point[0].Z - CameraPosition.Z;

Point[1].X :=

PolyWorld[X].Point[1].X - CameraPosition.X;

Point[1].Y :=

PolyWorld[X].Point[1].Y - CameraPosition.Y;

Point[1].Z :=

PolyWorld[X].Point[1].Z - CameraPosition.Z;

Point[2].X :=

PolyWorld[X].Point[2].X - CameraPosition.X;

Point[2].Y :=

PolyWorld[X].Point[2].Y - CameraPosition.Y;

Point[2].Z :=

PolyWorld[X].Point[2].Z - CameraPosition.Z;

Point[3].X :=

PolyWorld[X].Point[3].X - CameraPosition.X;

Point[3].Y :=

PolyWorld[X].Point[3].Y - CameraPosition.Y;

Point[3].Z :=

PolyWorld[X].Point[3].Z - CameraPosition.Z;

{ Rotate the points using the camera rotation. }
RotatePoint(1, 0, 0, -CameraRotation.X, Point[0]);

RotatePoint(0, 1, 0, -CameraRotation.Y, Point[0]);

RotatePoint(0, 0, 1, -CameraRotation.Z, Point[0]);

RotatePoint(1, 0, 0, -CameraRotation.X, Point[1]);

RotatePoint(0, 1, 0, -CameraRotation.Y, Point[1]);

RotatePoint(0, 0, 1, -CameraRotation.Z, Point[1]);

RotatePoint(1, 0, 0, -CameraRotation.X, Point[2]);

RotatePoint(0, 1, 0, -CameraRotation.Y, Point[2]);

RotatePoint(0, 0, 1, -CameraRotation.Z, Point[2]);

RotatePoint(1, 0, 0, -CameraRotation.X, Point[3]);

RotatePoint(0, 1, 0, -CameraRotation.Y, Point[3]);

RotatePoint(0, 0, 1, -CameraRotation.Z, Point[3]);

{ Rotate the light source. }
TransLightSource := LightSource;

RotatePoint(1, 0, 0, -DegToRad(CameraRotation.X),

TransLightSource);

RotatePoint(0, 1, 0, -DegToRad(CameraRotation.Y),

TransLightSource);

RotatePoint(0, 0, 1, -DegToRad(CameraRotation.Z),

TransLightSource);

NumberPoints := PolyWorld[X].NumberPoints;

PolyColor := PolyWorld[X].PolyColor;

DibColor := PolyWorld[X].DibColor;

end;
end;

end;
end;

End Listing Four
30 November 1998 Delphi Informant

31 November 1998 Delphi Informant

By Gregory Deatz

Dynamic Delphi
Threading / DLLs

Figure 1: An e
how to allow it
Thread-Safe DLLs
Creating Win32 DLLs for Multi-threaded Applications

Multi-threaded applications are now the norm, not the exception. Indeed, the
safest assumption to make about a Win32 program is that it uses multi-

threading. Therefore, as software houses publish mechanisms for extending an
application’s functionality, the developer is forced to write thread-safe libraries.
x

When most of us think about the implemen-
tation of a particular procedure or function,
we generally think in terms of local and glob-
al variables. However, a procedure or function
in a DLL can be called by multiple threads
simultaneously, and care must be taken to
ensure that variables previously understood to
be “global” are not actually “thread-local.”

Take, for example, functions that must retain
“state” between calls. A developer might
choose to implement a set of functions like:

function GetFirstWord(st: string): string;
function GetNextWord(st: string): string;

When a developer needs to parse a string, he
or she first calls GetFirstWord, which returns
the first word of st. The developer is unaware
that GetFirstWord remembers where it
stopped scanning st, so subsequent calls to
ample of how to declare a valid DllProc and
to be called.
GetNextWord will return the second word,
then the third word, and so on — until
GetNextWord is forced to return an empty
string because there are no more words in st.
Clearly, these functions can be implemented
in a thread-safe manner, and they can also be
implemented without taking the possible
existence of threads into consideration.

Note: There are many ways to achieve similar
GetNextWord functionality; this is just one
implementation. The key is to recognize that
there are types of questions where it’s desirable
that the function library, and not the calling
application, retain state between function calls.
For readers generally unfamiliar with manage-
ment of thread-local variables, and the need
for them, the Exe1 program (see Figure 1) and
its accompanying DLL (Dll1) are intended to
demonstrate the simple case of a single-thread-
ed process and a non-thread-safe DLL. They
provide the simple base for all subsequent
thread-safe examples, and are left for the reader
to study. (The complete source for Exe1, Dll1,
and all other demonstration programs dis-
cussed in this article are available for down-
load; see end of article for details.)

Delphi’s Memory Manager
Before we go too far, we must discuss the
Delphi memory manager. Way back when,
when Delphi was Borland Pascal, and it was
built for DOS, the memory manager did not
have to concern itself with threads, so the
memory manager Delphi used in version 1
was not thread-safe.

unit DllCode;

...

implementation
...

procedure DllEntry(Reason: Integer);

...

initialization
...

DllProc := @DllEntry;

...

end.

Figure 2: Declaring and setting up DllProc so it can be called.

Dynamic Delphi
For some strange reason, Borland resolved the problem by
introducing a global variable. The variable, IsMultiThread,
when set to True, tells the memory manager to wrap itself in
a Windows-critical section, thus ensuring the memory man-
ager is thread-safe.

When using Delphi’s TThread class, the developer is assured
that this variable is set. However, if the developer uses “raw”
Windows threads, or develops a DLL for a multi-threaded
application, this variable must be set manually.

This is very important! When developing a DLL for a multi-
threaded application, you must set the IsMultiThread variable.

Managing Thread-local Variables
The key to proper initialization and finalization of thread-
local variables is a procedure named DllEntryPoint, which is
an inherent part of all Win32 DLLs, and it is called when-
ever a process or thread attaches to a DLL. Delphi gives the
user access to this procedure through a procedure pointer
named DllProc, which is defined in the System unit.

DllEntryPoint takes a single Integer argument. The possible
values of this argument are DLL_PROCESS_ATTACH,
DLL_PROCESS_DETACH, DLL_THREAD_ATTACH,
and DLL_THREAD_DETACH (more about these in just a
bit). Figure 2 shows how to declare a valid DllProc and how
to get it called.

Note that there is no declaration for DllEntry in the inter-
face section. This is because the existence of the procedure
need only be known to the unit itself. When a process first
attaches to Dll2, the initialization section of DllCode exe-
cutes, where DllProc is set to the address of DllEntry.

Now that a process has attached to the DLL, DllEntry will
be called with DLL_THREAD_ATTACH whenever a
thread is created in the calling application. Whenever a
thread in the calling application exits gracefully, DllEntry
will be called with DLL_THREAD_DETACH. When a
process is unloading the library, DllEntry will be called with
DLL_PROCESS_DETACH.

Note that because we were not able to specify our DllEntryPoint
procedure until the initialization of the DLL, DllEntry will
never be called with DLL_PROCESS_ATTACH. This might
32 November 1998 Delphi Informant
be considered a problem, except that the initialization section
of a unit in a DLL is exactly equivalent to the call:

DllEntryPoint(DLL_PROCESS_ATTACH)

Likewise, the finalization section of a unit is exactly equiva-
lent to the call:

DllEntryPoint(DLL_PROCESS_DETACH)

Because process initialization and finalization take place in
the obvious places in a Delphi unit, all examples of DllEntry
will only respond to DLL_THREAD_ATTACH and
DLL_THREAD_DETACH.

Two Important Issues
Issue one. Suppose an application starts some threads; it then
loads the DLL. The DLL is never explicitly told that those
threads are executing, i.e. DllEntry will never be called with
the DLL_THREAD_ATTACH argument for those threads.
However, if those threads exit gracefully, the DLL will be
informed they are closing.

This means the DLL is potentially responsible for cleaning
up uninitialized data.

Issue two. Suppose an application loads a DLL; it then starts
some threads. Before gracefully closing its threads, the appli-
cation detaches from the DLL. The DLL will be told the
process is detaching (with DLL_PROCESS_DETACH), but
it won’t be explicitly told that each thread is also detaching.

This means that any clean-up procedures associated with
the freeing of resources in the DLL won’t be called. (It’s left
as a bit of a brain-teaser to figure this one out.)

So what do these issues mean? In brief: Take care!
Unfortunately, there is nothing intuitive about these reali-
ties, although they’re relatively easy to understand using an
example. The example program Exe2a allows you to load
Dll2 and watch it call process-level and thread-level initial-
ization and finalization. (To make sure you have a clear
understanding of the previous comments, you should make
it a point to play around with variations of creating and
destroying threads and loading and unloading the DLL.)

But what’s to manage here? If you’re using thread-local
scalars (native Delphi types like Integer) or Delphi strings,
you don’t have much to worry about. Exe2b demonstrates
how Dll2 uses a threadvar declaration of an Integer to
maintain a thread-local index into the string passed to
GetFirstWord and GetNextWord. (Again, Exe2a and Exe2b
are available for download; see end of article for details.)

Can Delphi Burp?
In conjunction with DllEntry and the initialization and
finalization sections of the DllCode unit, threadvar makes
it easy to manage thread-local variables. Right? Not quite.

Figure 4: Creating threads in the Dll3 demonstration program.

Figure 5: Closing one of the first three threads, i.e. one of those
created before the DLL was loaded.

procedure DllEntry(Reason: Integer);

begin
case Reason of

DLL_THREAD_ATTACH:

begin
tlObject := TTestObject.Create;

DllShowMessage(tlObject.ObjectName);

end;
DLL_THREAD_DETACH:

begin
if (tlObject = nil) then

DllShowMessage('Object is nil.')

else
DllShowMessage(tlObject.ObjectName);

tlObject.Free;

end;
end;

end;

Figure 3: The DllEntry procedure.

Dynamic Delphi
Let’s review for a moment. We have navigated process-level
and thread-level initialization and finalization of DLLs. It’s
quite possible that we’ve exhausted the topic. You should
have all the tools you require to go off and write completely
thread-safe DLLs, and manage the instantiation and clean-
up of thread-local objects. Or should you?

Here’s the way thread-local storage is supposed to work: All
thread-local storage is zero-initialized. This means that
33 November 1998 Delphi Informant
unless you put a value in a thread-local variable, you’re guar-
anteed it’s “zeroed out.” And, indeed, direct use of Win32’s
thread-local storage API (discussed later) shows this to be
true. However, Delphi has a quirk where its method of
thread-local storage has a small gas problem.

The demonstration programs Dll3 and Exe3 demonstrate
how we can get Delphi to burp. First, look carefully at the
source code for DllEntry in Figure 3. The code is simple, and
it makes it clear that when a thread attaches to the DLL, it
will create a thread-local instantiation of TTestObject in
tlObject. Likewise, when a thread detaches from a DLL, it
will free whatever resources it allocated for tlObject.

Now, to get Dll3 to burp:
1) Launch Exe3.
2) Start three threads (see Figure 4), noting that because

the DLL is not yet loaded, no entry points in the DLL
are being called. (Three is an arbitrary number, and is
sufficient for demonstrating the problem.)

3) Load the DLL.
4) Start three more threads, noting the messages the DLL

displays.
5) Go back to the first thread you loaded; close the thread,

noting the fact that tlObject is nil (see Figure 5). Do this
for the next two threads.

6) Now try to close the next thread (see Figure 6). And the
next. And the next (see Figure 7).

What happened to the thread-local objects we created? They
appear to have been lost in the shuffle. Obviously, something is
wrong, as the code is not behaving as expected, and the prob-
lem isn’t in the code we’ve written. The code is absurdly simple!

Forgetting about whose bug it is, the next most obvious
question is: How do we work around this issue, so that we
can maintain thread-local objects?

The Win32 API
We can work around this problem by directly using the
Win32 API. TLSAlloc, TLSFree, TLSGetValue, and
TLSSetValue are the system calls used to manage thread-
local storage:

TLSAlloc is used to allocate an index into the thread-
local “store.” A single, global index refers to a thread-
local pointer — a 32-bit value that is local to the thread.
TLSFree is used to free an index that was previously allo-
cated using TLSAlloc.
TLSGetValue is used to query the value of the thread-
local pointer referred to by the index allocated using
TLSAlloc.
TLSSetValue is used to set the value of the thread-local
pointer referred to by the index allocated using
TLSAlloc.

A code snippet from Dll4 (shown in Figure 8) demonstrates
how each of these functions are used. This is what happens,
step by step:

Figure 6: After closing the fourth thread, i.e. one created after
the DLL was loaded. There appears to be a problem.

Figure 7: After closing the final thread ... oops!

Dynamic Delphi
1) The initialization section allocates an index into the
thread-local store and saves this index in tlsObjectIndex.

2) It then sets DllProc to the address of DllEntry.
3) Now it calls CreateObject, which sets the thread-local

pointer referred to by tlsObjectIndex to the pointer to
the newly created TTestObject. CreateObject uses
TLSGetValue to then retrieve the newly created thread-
local object, so that its ObjectName property can be dis-
played back to the user.

4) Whenever a thread is created, CreateObject is called.
5) Whenever a thread detaches from the DLL, FreeObject is

called, which first displays a message informing the user
either that the object was never initialized, or it displays the
ObjectName property of the thread-local object. FreeObject
then frees the object referred to by the thread-local pointer,
and it then sets the thread-local pointer back to nil.

6) When the library is finally unloaded, it ensures the
process-level thread frees up any thread-local storage by
calling FreeObject.

7) Finally, tlsObjectIndex is freed using TLSFree.

It should be clear that the semantics of the Win32 system
calls and Delphi’s threadvar are identical. It’s just a bit more
cumbersome to use the Win32 calls.
You can run Exe4 and follow the burping exercise in the
previous section. You’ll notice our fourth example runs as
expected, and Dll4 does not misbehave during clean-up.

Conclusion
We’ve just studied thread-local variables and the DLL entry
procedure, and we’ve seen that maintaining a truly thread-
safe environment is generally easy, except that management
of objects can be a little tricky.
34 November 1998 Delphi Informant
Here are some closing thoughts on maintaining a thread-
safe environment within DLLs (even in applications):

DllEntryPoint is a nifty way for a DLL to stay aware of
active threads in the calling application.
It’s generally safe to use the threadvar construct to main-
tain thread-local scalars, including Delphi’s native string
type.
It is generally not safe to use the threadvar construct to
maintain thread-local objects. Instead, you should use
the Win32 API directly. Although it’s a bit more cum-
bersome, it’s still quite simple to use.
If you are writing an application that must maintain
thread-local scalars and objects, it’s probably better to
unit DllCode;

...

procedure CreateObject;

procedure FreeObject;

var
tlsObjectIndex: DWord;

...

implementation
...

procedure CreateObject;

begin
// First, create the new object and store it in the
// thread-local slot referred to by tlsObjectIndex.
TLSSetValue(tlsObjectIndex,

Pointer(TTestObject.Create));

// Get object just created and display its ObjectName.
DllShowMessage(TTestObject(

TLSGetValue(tlsObjectIndex)).ObjectName);

end;

procedure FreeObject;

begin
// Get thread-local value and report it's nil, or give
// the ObjectName property that was stored there.
if (TLSGetValue(tlsObjectIndex) = nil) then

DllShowMessage('Object is nil.')

else
DllShowMessage(

TTestObject(TLSGetValue(

tlsObjectIndex)).ObjectName);

// Free the object.
TTestObject(TLSGetValue(tlsObjectIndex)).Free;

// Set its value in the thread-local store to nil.
TLSSetValue(tlsObjectIndex, nil);

end;
...

procedure DllEntry(Reason: Integer);

begin
case Reason of

DLL_THREAD_ATTACH: CreateObject;

DLL_THREAD_DETACH: FreeObject;

end;
end;
...

initialization
tlsObjectIndex := TLSAlloc;

DllProc := @DllEntry;

CreateObject;

finalization
FreeObject;

TLSFree(tlsObjectIndex);

end.

Figure 8: An example of how the TLSAlloc, TLSFree,
TLSGetValue, and TLSSetValue functions are used.

Dynamic Delphi
use the Win32 API functions exclusively — if anything,
this promotes consistency.
Before making the decision to maintain thread-local
variables, one not-so-obvious question to ask yourself
is: Do you really need them? This article was written
with the assumption that thread-local variables are
sometimes desirable and possibly even necessary.
However, many functions, including GetFirstWord and
GetNextWord, can be implemented without global and
thread-local variables.

When developing DLLs for third-party applications, the
developer generally has no idea of the internal workings of
the calling application: the application could be multi-
threaded, or it could be single-threaded. This article has
explained how to write a thread-safe DLL, even if the devel-
oper doesn’t know how the calling application uses threads.
Along the way, we’ve discussed the Windows DllEntryPoint
function, thread-local storage, and appropriate clean-up of
“thread-locally” instantiated structures and objects. ∆

All demonstration programs referenced in this article are avail-
able on the Delphi Informant Works CD located in
INFORM\98\NOV\DI9811GD.

Gregory Deatz is a senior programmer/analyst at Hoagland, Longo, Moran, Dunst
& Doukas, a law firm in New Brunswick, NJ. He has been working with Delphi
and InterBase for approximately two years and has been developing under the
Windows API for approximately five years. His current focus is in legal billing and
case management applications. He is the author of FreeUDFLib, a free UDF library
for InterBase written entirely in Delphi and hosted at http://www.interbase.com.
He can be reached via e-mail at gdeatz@hlmdd.com, by phone at
(732) 545-4579, or by fax at (732) 545-4579.
35 November 1998 Delphi Informant

http://www.interbase.com

36 November 1998 Delphi Informant

OP Tech
Win32 Development / Shareware

By Yorai Aminov
Is Delphi Running the Code?
Determining If a Program Was Started in the Delphi IDE

How can I tell if code is running under Delphi? It’s an important question to
shareware authors who want to make their programs available only within

the Delphi IDE. At least until they’re paid for! A common answer is to look for
one of Delphi’s standard windows, but that’s not a satisfactory method. The
fact that Delphi is running doesn’t necessarily mean code is being executed
under its control.
This article presents a method for detecting if
code is running under the control of Delphi,
i.e. if it was run from the Delphi IDE.
Unfortunately, a great deal of the data need-
ed to determine this can only be obtained by
undocumented functions. An additional
obstacle is that both the documented and
undocumented functions necessary for this
task are incompatible across Windows plat-
forms. The method used in this article han-
dles Windows 95 and Windows NT.

This article assumes the reader is familiar
with Win32 processes; a full explanation of
processes is beyond the scope of this article.
If you are not familiar with them, I suggest
Advanced Windows by Jeffrey Richter
[Microsoft Press, 1995]. Another source is
the Win32 SDK. An online version of the
SDK documentation is available at
http://www.microsoft.com/msdn.

The Necessary Information
To determine if it’s running under the con-
trol of Delphi, the code needs to know two
things: It needs to determine if it was started
by Delphi, and if it’s being debugged. If the
answer to both of these questions is yes, the
code is running under Delphi’s control.

Although the questions are simple, obtaining
the answers to them can be complicated. For
example, Windows NT supplies the
IsDebuggerRunning function, which returns
True if a process is running in the context of
a debugger. Windows 95, however, provides
no documented way of determining this
information. Similarly, the ToolHelp32 func-
tions provide a simple method for determin-
ing the parent of a process, but are imple-
mented only in Windows 95. According to
the Microsoft Win32 SDK, these functions
are also implemented in Windows NT 5.0.
Under earlier versions of NT, however, this
information must be obtained through
undocumented methods.

Because of these limitations, four separate
algorithms must be provided: two for deter-
mining the parent process (one for Windows
NT and one for Windows 95), and two to
check for the presence of a debugger.

Determining the Parent Process
Under Windows 95 (and NT 5.0), the
ToolHelp32 functions can be used to provide
information regarding processes. The
ToolHelp32 functions, constants, and data
types are defined in the TlHelp32 import
unit, supplied with Delphi 3. Unfortunately,
this unit implicitly links the functions to the
executable, preventing any code using the
unit from running on NT. To make the code
portable, explicit linking using the
LoadLibrary and GetProcAddress functions
must be employed.

http://www.microsoft.com/msdn

type
PProcessEntry32 = ^TProcessEntry32;

TProcessEntry32 = record
dwSize: DWORD;

cntUsage: DWORD;

th32ProcessID: DWORD;

th32DefaultHeapID: DWORD;

th32ModuleID: DWORD;

cntThreads: DWORD;

th32ParentProcessID: DWORD;

pcPriClassBase: Longint;

dwFlags: DWORD;

szExeFile: array[0..MAX_PATH - 1] of Char;

end;

Figure 1: The TProcessEntry32 record.

function GetParentProcessIDForWindows: Integer;

var
Kernel32: THandle;

CreateToolhelp32Snapshot: TCreateToolhelp32Snapshot;

Process32First: TProcess32First;

Process32Next: TProcess32Next;

Snapshot: THandle;

Entry: TProcessEntry32;

WalkResult: Boolean;

ID: Integer;

begin
Result := 0;

Kernel32 := LoadLibrary('KERNEL32.DLL');

if Kernel32 <> 0 then begin
CreateToolhelp32Snapshot :=

GetProcAddress(Kernel32,'CreateToolhelp32Snapshot');

Process32First := GetProcAddress(Kernel32,

Process32First');

Process32Next := GetProcAddress(Kernel32,

'Process32Next');

if Assigned(CreateToolhelp32Snapshot) and
Assigned(Process32First) and
Assigned(Process32Next) then begin

ID := GetCurrentProcessId;

Snapshot :=

CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if Snapshot <> -1 then begin
Entry.dwSize := SizeOf(TProcessEntry32);

WalkResult := Process32First(Snapshot, Entry);

while (GetLastError <> ERROR_NO_MORE_FILES) and
(Result = 0) do begin

if WalkResult then begin
if Entry.th32ProcessID = ID then

Result := Entry.th32ParentProcessID;

end;
Entry.dwSize := SizeOf(TProcessEntry32);

WalkResult := Process32Next(Snapshot, Entry);

end;
CloseHandle(Snapshot);

end;
end;
FreeLibrary(Kernel32);

end;
end;

Figure 2: The GetParentProcessIDForWindows function accesses
the ToolHelp32 functions from KERNEL32.DLL, and walks the
process list to retrieve the parent process ID.

OP Tech
The ToolHelp32 functions work by creating a snapshot,
then walking through it. A snapshot is a description of the
requested information at a single moment. Because the
information handled by the ToolHelp32 functions —
37 November 1998 Delphi Informant
processes, threads, modules, and heaps is constantly
changing, a snapshot ensures the data won’t change while
being examined.

Such a snapshot is required to determine the parent of the
current process. The snapshot is retrieved by calling the
CreateToolHelp32Snapshot function, specifying the
TH32CS_SNAPPROCESS flag. The function returns a han-
dle to a snapshot, which must be released later by calling
CloseHandle.

Once the snapshot is obtained, the Process32First and
Process32Next functions are used to “walk” the snapshot.
These functions return True for success, and False for fail-
ure. If the function fails, the GetLastError function can be
used to retrieve error information. When GetLastError
returns ERROR_NO_MORE_FILES, the end of the
process list has been reached. The Process32First and the
Process32Next functions take a TProcessEntry32 record (see
Figure 1) as a parameter. The functions fill this record
with information. The only fields of interest to us are
th32ProcessID, which we compare with our own process
ID (obtained by calling the GetCurrentProcessId function),
and th32ParentProcessID, the process ID of the parent
process.

Figure 2 lists the GetParentProcessIDForWindows function,
which returns the parent process ID under Windows 95 and
NT 5.0 using ToolHelp32 functions. The function uses
LoadLibrary and GetProcAddress to access the ToolHelp32
functions from KERNEL32.DLL, and walks the process list
to retrieve the parent process ID.

Under versions of NT earlier than 5.0, the ToolHelp32
functions are not implemented, nor does any documented
way of obtaining the parent process ID exist. The solution
is to use the undocumented NtQueryInformationProcess
function. The function is defined in NTDDK.H in the
Microsoft Windows NT Device Driver Kit, along with the
data structures it uses. This function can return many types
of information regarding a process, but for this article, only
the PROCESS_BASIC_INFORMATION class is neces-
sary. The basic process information includes the ID of the
parent process. Figure 3 lists the TProcessBasicInformation
type, translated from the C header file.

The NtQueryInformationProcess function is implemented
in NTDLL.DLL, and its address can be retrieved by call-
ing GetProcAddress. The function takes as a parameter a
handle to a process (which we obtain by calling
GetCurrentProcess), the type of information requested, a
pointer to a buffer to receive information, the size of the
buffer, and a pointer to a variable that receives the actual
size of the output data. GetParentProcessIDForNT simply
loads NTDLL.DLL, retrieves the address of
NtQueryInformationProcess, and calls it to retrieve the par-
ent process ID, stored in TProcessBasicInformation’s
InheritedFromUniqueProcessID field.

type
TProcessBasicInformation = packed record

ExitStatus: Integer;

PebBaseAddress: Pointer;

AffinityMask: Integer;

BasePriority: Integer;

UniqueProcessID: Integer;

InheritedFromUniqueProcessID: Integer;

end;

Figure 3: TProcessBasicInformation.

function GetParentProcessID: Integer;

var
OSVersionInfo: TOSVersionInfo;

begin
OSVersionInfo.dwOSVersionInfoSize :=

SizeOf(TOSVersionInfo);

GetVersionEx(OSVersionInfo);

if (OSVersionInfo.dwPlatformId=VER_PLATFORM_WIN32_NT)and
(OSVersionInfo.dwMajorVersion < 5) then

Result := GetParentProcessIDForNT

else
Result := GetParentProcessIDForWindows;

end;

Figure 4: GetParentProcessID checks the operating system ver-
sion and platform, and calls the appropriate function.

type
PProcessDatabase = ^TProcessDatabase;

TProcessDatabase = packed record
DontCare1: array[0..7] of Integer;

Flags: Integer;

DontCare2: array[0..11] of Integer;

DebugeeCB: Integer;

DontCare3: array[0..22] of Integer;

DontCare4: Word;

end;

Figure 5: The TProcessDatabase record.

OP Tech

function IsDebuggerPresentForWindows: Boolean;

var
PDB: PProcessDatabase;

TID: Integer;

Obsfucator: Integer;

begin
Result := False;

Obsfucator := 0;

TID := GetCurrentThreadID;

asm
MOV EAX, FS:[18h]

SUB EAX, 10h

XOR EAX, [TID]

MOV [Obsfucator], EAX

end;
if Obsfucator <> 0 then begin

PDB := Pointer(GetCurrentProcessID xor Obsfucator);

Result := (PDB^.Flags and fDebugSingle) <> 0;

end;
end;

Figure 6: IsDebuggerPresentForWindows tests for the presence
of a debugger.
The GetParentProcessID function (see Figure 4) simply checks
the operating system version and platform, and calls the appro-
priate function to do the work. If the code is running on
Windows 95 or NT 5.0 and higher, it uses the ToolHelp32
version; otherwise, it uses NtQueryInformationProcess.
Once the parent process ID has been obtained, it can be
compared with Delphi’s process ID (explained later in this
article). Even if the IDs match, this is insufficient proof that
Delphi controls the code. It’s quite possible the code is part
of a program started by Delphi, for example, through the
Tools menu. It’s also necessary to make sure the process is
being debugged.

Determining the Presence of a Debugger
Again, Windows 95 and NT differ. NT provides the
IsDebuggerRunning function, which returns True if the cur-
rent process is being debugged by a Ring 3 debugger, such as
Delphi’s integrated debugger. Neither NT nor Windows 95
provide a way, documented or not, of determining whether a
kernel-mode debugger, such as SoftICE, is running. There
are undocumented ways of determining whether a specific
kernel-mode debugger is running, but the question itself is
irrelevant to this article.

Under Windows 95, there is no documented way of deter-
mining if a process is being debugged. Again, this informa-
tion can only be obtained using undocumented techniques.

When a new process is created under Windows 95, the ker-
nel creates a Process Database (PDB) for it. A process data-
base is an internal object that contains information about a
process. In Windows 95 System Programming Secrets [IDG
Books, 1995], Matt Pietrek describes the PDB in detail. For
38 November 1998 Delphi Informant
the purposes of this article, however, only two fields of the
PDB are of interest. Therefore, the TProcessDatabase (see
Figure 5) record used by the code ignores all other fields. For
more information about the PDB, I strongly recommend
reading Pietrek’s book.

The Flags field contains a bit mask describing various prop-
erties of the process. The only bit that interests us is the
fDebugSingle flag ($00000001), which is set when a process
is being debugged. The reason the DebugeeCB field is also
defined in the record is that it appears to be a pointer to the
debugee’s context block when a process is being debugged.
This means that it will be non-zero if the process is being
debugged, which provides an alternative method of deter-
mining this information.

The tricky part is obtaining a pointer to the PDB. The solu-
tion is to use the “Obsfucator” value (the term comes from
Microsoft binaries, where it was originally misspelled). The
value returned from the GetCurrentProcessId function is actu-
ally a pointer to the PDB, xor’ed with the Obsfucator value.
The same algorithm is implemented in GetCurrentThreadId.
To complicate things, this value is calculated upon system
startup. This means that to get to the PDB, the value of the
Obsfucator must be obtained. Fortunately, the rest is simple,
because simply xor’ing the result of GetCurrentProcessId with
the Obsfucator gives the pointer back to the PDB.

To calculate the Obsfucator value, the code uses the result of
GetCurrentThreadId. GetCurrentThreadId returns, much like

procedure EnumWindowsProc(Window: THandle;

LParam: Integer); stdcall;
var

ClassName: string;
begin

SetLength(ClassName, 255);

GetClassName(Window, PChar(ClassName), 255);

SetLength(ClassName, StrLen(PChar(ClassName)));

if ClassName = 'TAppBuilder' then
TList(LParam).Add(Pointer(Window));

end;

function RunningUnderDelphi: Boolean;

var
List: TList;

i: Integer;

ID, ParentID: Integer;

begin
Result := False;

ParentID := GetParentProcessID;

if (ParentID <> 0) and (IsDebuggerPresent) then begin
List := TList.Create;

EnumWindows(@EnumWindowsProc, Integer(List));

for i := 0 to List.Count - 1 do begin
GetWindowThreadProcessID(Integer(List[i]), @ID);

if ID = ParentID then begin
Result := True;

Break;

end;
end;
List.Free;

end;
end;

Figure 7: The RunningUnderDelphi procedure and
EnumWindowsProc function.

OP Tech
GetCurrentProcessId, a pointer to the thread database (an object
similar to the process database), xor’ed with Obsfucator.
Therefore, if we have a pointer to the current process thread
database, we can xor it with the thread ID to get the Obsfucator.
The thread database starts 16 ($10) bytes before the thread
information block (TIB), which is used a lot by Win32. Both
Windows NT and Windows 95 dedicate the FS register to
pointing at the TIB for the current thread. Based on this infor-
mation, the calculation of the address of the thread database is
simply the linear address of the TIB, minus $10. The linear
address of the TIB is stored at offset $18 in the TIB, so the
address of the thread database is FS:[$18] - $10.

The IsDebuggerPresentForWindows function (see Figure 6)
uses the PDB’s Flags field to test for the presence of a debug-
ger. It uses assembly code to access the FS register and calcu-
late the Obsfucator, and uses the result of this calculation to
locate the PDB.
39 November 1998 Delphi Informant
Checking for Delphi’s Control
Once the code has determined the presence of a debugger,
it should compare the parent process ID with Delphi’s
process ID. However, it’s possible for multiple instances of
Delphi to be running, so all instances should be checked.
The easiest way to find an instance of Delphi is to look for
its main window. Delphi’s main form’s window class is
TAppBuilder (at least through version 3). The
RunningUnderDelphi function and its helper routine,
EnumWindowsProc (see Figure 7), enumerate through all
top-level windows by calling EnumWindows, check for the
TAppBuilder class name, and save the handles of matching
windows in a TList by storing integers instead of pointers.
Each window handle in the list is then checked by obtain-
ing the process ID for the window through the
GetWindowThreadProcessID function and comparing that
ID with the parent process ID. If a match is found, the
function returns True and the search is aborted.

Conclusion
This article presents a method of determining if code runs
under the control of Delphi. As with all code that uses undoc-
umented methods, there’s no guarantee it will work on future
versions of Windows. On the other hand, the techniques out-
lined in this article can be used for many purposes. Although
the Win32 API can be quite powerful, there are many cases
where a program needs to know more than Windows is ready
to tell. The use of undocumented functions and data blocks
may be the only way to accomplish a necessary task. ∆

The demonstration application referenced in this article is avail-
able on the Delphi Informant Works CD located in
INFORM\98\NOV\DI9811YA.

Yorai has been programming for over 10 years — as a professional developer for
three years. He uses Delphi as his main programming tool, and writes mostly com-
ponents, visual controls, Win32 API code, and medium- to large-scale client/server
database applications. His previous programming experience includes DOS develop-
ment in Turbo Pascal, C, and assembly, OS/2 1.x development in C, Windows devel-
opment in C, and Turbo Pascal for Windows. He has published several articles in
Delphi Developer (Pinnacle Publishing), dealing with implementation of advanced
Delphi and Win32 techniques, and is a member of TeamB. Yorai can be reached via
e-mail at yaminov@trendline.co.il.

40 November 1998 Delphi Informant

New & Used

By Warren Rachele
Wanda the Wizard Wizard
A RAD Tool for Creating Wizards

W izards are a common feature of the modern Windows landscape. They
lead the user through a series of linked — sometimes complex — steps,

collecting data and allowing decisions to be made in an orderly, controlled
fashion. A wide range of tasks lend themselves to a wizard interface: help sys-
tems, product registration, configuration, and training tools are just a few of
the obvious choices. Yet creating an effective wizard takes an enormous invest-
ment of time and energy to develop. Wanda the Wizard Wizard is a software
tool that seeks to make the creation of these interface items and their inclusion
into your Delphi program efficient and easy.
Wanda the Wizard Wizard is a RAD tool
designed solely to create wizards. Currently
in version 1.5.2.2, the tool is produced by
Ingeneering Inc. of Ann Arbor, MI. The
tightly focused environment and intelli-
gence provides an additional benefit for the
developer: The process of building the wiz-
ards can be off-loaded to staff more attuned
to interface issues, such as an interface
designer or trainer.

Using the Tools
Upon starting the Wizard Designer, the
developer is immersed in a RAD environ-
ment that is immediately familiar. A property
sheet takes up the left side of the IDE, with a
component toolbar stretching across the top.
The rest of the IDE window is devoted to
the wizard page (form) being developed. The
process of composing the wizard pages fol-
lows proven methodologies. A component is
selected from the toolbar and dragged onto
the page. Once positioned, the developer sets
the properties for each component to achieve
the desired effect.

Saving the wizard project results in a propri-
etary .WZX file. Executing the wizard
through the IDE is a matter of clicking the
Run button. This process engages the run-
time engine, WANDA.DLL. The VCL com-
ponent used to include Wanda technology in
a Delphi program is an interface to this DLL,
which becomes a part of the distribution file
set for the program.

The installation of Wanda the Wizard
Wizard runs automatically, providing the
programmer with the option of where to
install the product and the menu group in
which it appears. A complete installation,
including the interface objects for all sup-
ported products and the example files, con-
sumes just under 4MB of disk space.
Installation is a manual process, which adds a
new tab to the VCL toolbar and a single
component.

So, why bother with a third-party tool to
build an object that could be created within
the Delphi environment? The answer is:
rapid, focused development. Wanda makes it
easy to transfer the flow of ideas into action
by incorporating wizard-specific properties
and methods into its components. Intelligent
ideas are everywhere in this tool, starting
with the base window, referred to in wizard
nomenclature as a “page.”

Figure 1: A wizard in development.

New & Used
Wanda has borrowed an idea from the page layout profes-
sion, allowing the designer to establish a master page. This
is a non-visible page that can become the basis for all
remaining pages created in the wizard. The designer can
establish the size, color, logo, button arrangement, and any
other common attribute one time on the master page. Each
new page that is created, identifying this object in the
MasterPage property, inherits all the properties and attribut-
es of the original design. Delphi programmers will immedi-
ately see the benefits of this object-oriented design. Any
changes that are required of the fixed components or
attributes need only be made once. The changes made to
the master page immediately cascade through the child
pages. Not only does this reduce the possibility of error, it
saves the programmer considerable time and effort, espe-
cially when dealing with active items, such as buttons and
their associated linkages.

Pages other than the master page are also assigned a page
type. The choice made (Normal, Start, End) determines the
logical flow through the dialog boxes and whether certain
button types are enabled. For example, a page type of End
requires that the users of the wizard have worked their way to
the last page of dialog before a Done button will become
enabled. Consider the amount of work required in a general-
purpose development tool to build this kind of functionality
into a series of forms.

The button components and their associated action codes
offer a limited, but focused, selection of methods. All but-
ton actions, with the exception of Done and Cancel, are ori-
ented toward the user’s navigation of the wizard pages.
Buttons can be provided to go to the first, last, previous, or
next pages, as well as specific pages within the stack.
Initially, the programmer might feel limited by the restric-
tions imposed by the selection of components, or the fact
that no coding is allowed within the wizard. Once the
mind-set of the wizard system is acknowledged, however,
the programmer realizes that these are the only items and
actions needed to implement the ideal wizard, and can focus
on the application.

An example of a simple wizard in development is shown in
Figure 1. The master page for this wizard shows the common
components that will appear on every child page. The button
actions have been set as methods of this page and do not
need to be modified on the pages derived from it. The
designer is now free to concentrate on content and logical
flow, rather than the mechanics of getting from page to page
and handling user actions that don’t go according to plan.
Figures 2 and 3 show the two visible pages that make up the
registration wizard for Surfside Digital Design. Each of the
data elements captured on either page is available for query
when the wizard has completed. Figure 3 shows the last page
of the wizard containing a list box from which the user will
identify the source of the program. This component, as well
as the bitmap in the logo component, demonstrates an idio-
syncrasy of the Wanda environment.
41 November 1998 Delphi Informant
The data contained in the list box must be provided as an
external text source. In this case, the list was composed in a
text editor and saved as a .TXT file. To bring text and bitmap
resources into a Wanda wizard, they must be registered with
the Resource Manager in the IDE. Once the items have been
registered, they become available to the workspace. In the
case of the list box, the Resource property has been set to a
test list registered as buylist. Though the data or bitmap will
appear right away in the wizard, modification of the underly-
ing data is not automatically reflected within the wizard. The
object must be removed from the resource manager and the
modified version added back into the resource list. To com-
plete the update, components calling the resource need their
properties reset.

Wanda provides a run-time emulator integrated into the
IDE that allows the designer/builder to test and debug the
wizard. Figure 4 shows the Surfside wizard in “execution
mode.” The IDE minimizes and is replaced on screen with
the wizard form and the Run-Time Emulator (RTEM).
The RTEM window is segmented into three boxes: Page

Stack, Results, and Query. The Page Stack dynamically
demonstrates the logical flow from page to page, moving a
pointer that follows the user’s movement. The Query edit
box allows the designer to determine the contents or state
of any component on the wizard. Each component is
assigned a numeric identifier that must be prefaced with
the character “c” to be used in the query. When queried,
the contents of the selected component are shown in the
Results list box.

Integration with Delphi
Using the Wanda-created wizard in a Delphi program is as
simple as dropping the Wanda component on a form and set-
ting the appropriate properties. When the user needs to run
the wizard, the Active property is set to True, and the Wanda
run-time engine activates and runs the wizard. The Surfside
demonstration program shown in Figure 5 is designed to run
the registration wizard and query the results for use in the
Delphi program. The Register button’s Click method is used
to activate the wizard.

Figure 2: One of two visible pages that make up the registration
wizard for Surfside Digital Design.

Figure 3: The other visible page for Surfside’s registration wizard.

New & Used

Figure 4: The Surfside wizard in execution mode.

Figure 5: The Surfside demonstration program in the Delphi IDE.
Listing Five (on page 44) demonstrates the behind-the-scenes
work necessary to fully exploit the power of the Wanda wiz-
ard. Although the component offers the ability to run the
wizard through property settings, any truly useful work is
going to be accomplished through external function calls to
the run-time engine, WANDA.DLL.

The first point to examine is the method called to run
the wizard. Setting the Active property to True will activate
the wizard, but the calling program won’t be able to query
the wizard’s exit status. By calling the RunWizard method,
the program is able to determine whether the user success-
fully completed the wizard or canceled out of it. The
RunWizard method also handles memory management
in the event that a FreeWizard call was not successful in
removing the memory captured by the DLL, or not
used at all.

The remaining code is devoted to querying the components
on the wizard form to obtain their contents. Contrary to
the documentation supplied with the product, it appears
that the programmer has a choice of the methods used to
set up the query of a component. The statements following
the { Query Name. } comment show a call to SetComponent
42 November 1998 Delphi Informant
before the QueryString method. This directs the query
method to the particular component by passing the integer
value of the component ID to the function, setting up an
internal pointer. The QueryString method is called with a
PChar as the parameter, giving the function a place to put
the null-terminated string it will return from the wizard.

Immediately below this set of instructions is a second query
to the Organization field of the wizard. In this case, the
component ID is set through the use of the Wanda compo-
nent’s Query function, something the documentation
appears to warn against. Both approaches worked consis-
tently. Figure 6 shows a view of the executing Surfside
demonstration after a return from the wizard. All the fields
from the wizard form have been queried, and the data
retrieved into the Delphi program.

A disappointment was the handling of the list box query. The
query returns a numeric value representative of the list position
of the item clicked by the user. Unable to query the contents of
the resource directly to capture the text of the item, the pro-
grammer would be required to include the text resource in the
Delphi program to accomplish this feat, and having the text list
in two work areas leads to the possibility of update anomalies.

Figure 6: The Surfside demonstration at run time after returning
from the Surfside wizard.

New & Used
The Product
Wanda the Wizard Wizard ships on a single diskette, or it can
be downloaded in demonstration form from Ingeneering Inc.’s
Web site at http://www.ingeninc.com. It ships with the docu-
mentation in an Adobe .PDF (Portable Document Format) file,
with a printed version of the manual available from the compa-
ny at an additional cost.

The documentation is a low point of the product. The organi-
zation of the document leads the user to a lot of dead ends
without providing answers. An example is the presentation of
the tutorials early in the manual. Following the description step
by step, wizards are created that deliver many unexpected
results, such as buttons never being activated. No explanation is
provided for situations such as this, leading to a good deal of
frustration for first-time users. The answer to this particular
problem is buried as a casual reference to page types much fur-
ther on in the documentation. The programmer would do well
to read the documentation thoroughly before attempting to use
the product. A secondary issue with the documentation is that
it is shipped incomplete, with numerous references for specific
product support labeled as “coming.”

The IDE shows a few rough edges as well. For example, com-
ponents such as buttons and edit fields were found to have
43 November 1998 Delphi Informant
mysteriously moved from their
original position. Thinking this
was a case of a lazy mouse hand,
the components were moved
back into position where they
remained. Then, while reviewing
the properties for a component,
a button was seen to move as the
list of properties was clicked
from field to field. Moving up
the list in ascending order, the
button moved up a notch as
each property was clicked.

Also frustrating was the default
activity of the Open dialog box.
There’s no way to set the default
directory to the project directory,
forcing the user to start in the
My Documents folder. Finally,
there is no online Help file; the
Help | Topics menu option directs
the programmer back to the .PDF or .PRN file.

Conclusion
Wanda the Wizard Wizard is a worthwhile tool for the pro-
grammer looking to add wizard functionality to a program.
As long as its limits are understood and programmer expecta-
tions appropriately tempered, the development of wizards to
be included in a Delphi program will not be a disappointing
experience. In fact, working with the tool leads to new ideas
for additional functionality and usefulness. The roughness of
the product and the documentation should not dissuade
developers and interface designers from exploring the possi-
bility of adding this software to their toolbox. ∆

Wanda the Wizard Wizard has some
rough edges, particularly when it
comes to its documentation.
However, intelligent ideas are abun-
dant and it provides rapid, focused
development of objects that could be
created within Delphi. Given the
prevalence of wizards in Windows
applications today, Wanda proves to
be a promising and practical addition
to a Delphi developer’s toolbox.

Ingeneering Inc.
1645 Morehead Drive
Ann Arbor, MI 48103

Phone: (734) 662-4646
Fax: (734) 662-4682
E-Mail: info@ingeninc.com
Web Site: http://www.ingeninc.com
Price: US$199.95 (direct from
Ingeneering Inc.)

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO soft-
ware development company specializing in database-management software. The
company has served its customers since 1987. Warren also teaches program-
ming, hardware architecture, and database management at the college level. He
can be reached by e-mail at wrachele@earthlink.net.

http://www.ingeninc.com
http://www.ingeninc.com

New & Used
Begin Listing Five — Surfside Demo
unit surfdemo;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons, WandaRun;

type
TForm1 = class(TForm)

WandaRun1: TWandaRun;

BitBtn1: TBitBtn;

BitBtn2: TBitBtn;

lbMessage1: TLabel;

lbRegistered: TLabel;

lbName: TLabel;

lbOrg: TLabel;

lbAddress: TLabel;

lbCity: TLabel;

lbState: TLabel;

lbZip: TLabel;

lbPurchased: TLabel;

procedure BitBtn2Click(Sender: TObject);

private
{ Private declarations. }

public
{ Public declarations. }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}
{ -- Wanda run-time DLL imports -- }
procedure QueryString(s: PChar);

stdcall; external 'Wanda.DLL';

function SetComponent(id: Integer): LongBool;

stdcall; external 'Wanda.DLL';

function RunWizard(fn: PChar): LongBool;

stdcall; external 'Wanda.DLL’;

function FreeWizard: LongBool;

stdcall; external 'Wanda.DLL';

function QueryLong(id: Integer): Integer;

stdcall; external 'Wanda.DLL';

procedure TForm1.BitBtn2Click(Sender: TObject);

var
s : array[0..75] of Char;

lastrun : Boolean;

begin
lbMessage1.Caption :=

'Starting the Registration Wizard...';

{ Activate the Wanda run time. }
lastrun := RunWizard(PChar(WandaRun1.WizardName));

{ Query the exit return value. }
44 November 1998 Delphi Informant
if not lastrun then begin
{ User clicked on Cancel or pressed Escape. }
lbRegistered.Caption := 'User Canceled: UNREGIS-

TERED!';

lbRegistered.Visible := True;

end
else begin

{ User completed the wizard and clicked Done. }
lbMessage1.Caption := 'Thank you for registering.';

lbRegistered.Caption := 'Registered';

lbRegistered.Visible := True;

{ Query Name. }
if not SetComponent(19) then

raise Exception.Create('Query Error')

else begin
QueryString(s);

lbName.Caption := StrPas(s);

lbName.Visible := True;

end;

{ Query Organization. }
WandaRun1.Query := 'c20';

QueryString(s);

lbOrg.Caption := StrPas(s);

lbOrg.Visible := True;

{ Query Address. }
WandaRun1.Query := 'c21';

QueryString(s);

lbAddress.Caption := StrPas(s);

lbAddress.Visible := True;

{ Query City. }
WandaRun1.Query := 'c22';

QueryString(s);

lbCity.Caption := StrPas(s);

lbCity.Visible := True;

{ Query State. }
WandaRun1.Query := 'c23';

QueryString(s);

lbState.Caption := StrPas(s);

lbState.Visible := True;

{ Query Zip. }
WandaRun1.Query := 'c24';

QuerySTring(s);

lbZip.Caption := StrPas(s);

lbZip.Visible := True;

{ Query the Listbox. }
WandaRun1.Query := 'c28';

lbPurchased.Caption := FloatToStr(QueryLong(28));

lbPurchased.Visible := True;

FreeWizard;

end;
end;

end.

End Listing Five

The Joy of Demos

Live technology previews — or “demos” as they’re commonly known — are typically nothing more than a
façade, cobbled together to chug along on the inside, while giving the appearance of grandeur on the

outside. Demos are loathed by developers because of the extra work required to simply meet an “artificial”
milestone. To make matters worse, a demo is never accounted for in the schedule, forcing the developer to
make up the time somehow.

From the Trenches
Directions / Commentary
Of course, demos have their merits.
Management can get a product in
front of a user and start to solicit feed-
back early in the development process.
This lowers development costs and
keeps the product’s features closer to
user expectations. It can also provide
positive reinforcement that a course is
worth pursuing.

Which takes us to the recent
Borland/Inprise conference, held the
third week of August, in Denver
Colorado. In front of nearly 3,000 peo-
ple, Chuck Jazdzewski, Delphi’s princi-
pal architect, demonstrated a pre-release
Delphi compiler that produced Java
byte code. The result was a thundering
round of well-deserved applause.

The demonstration created a TDatabase
component, and attached it to a JDBC
datasource through a new TDatabase
property. After flushing the sample out to
loop through and display records, a
replacement command-line compiler,
dcc32j, was invoked to produce Java byte
code. The intended use of this technology
is to allow non-visual applications created
in Delphi to run on any platform that has
a Java Virtual Machine (JVM). It’s an
interesting idea: Write your application
server for a multi-tier solution in Delphi,
and you can run the application server on
another platform, e.g. a Sun box.
45 November 1998 Delphi Informant
Although the demonstration was rela-
tively simple, it illustrated Inprise’s
commitment to create tools for devel-
opers that must provide solutions for
multiple platforms. Granted, this fea-
ture won’t be on your desktop tomor-
row; there’s plenty of work left, but the
demonstration was impressive. All the
more so considering the venue. How
many times have you demonstrated a
pre-release compiler to 3,000 people,
including the international media? It
must have been a serious temptation for
Dilbert’s Dark Angel of Demos.

The demonstration drove home some
additional points as well:

Inprise is at the forefront of interop-
erability, and is second-to-none in
technical ability.
You can leverage your Delphi skills
and experience to throw your pail
and shovel into the Java sandbox.
The Delphi team has shown that a
significant shift in the marketplace
doesn’t mean the end of Delphi. In
fact, as Delphi embraces these tech-
nologies and innovations, it gives
developers a way to play in that
arena quickly and easily. I’ll go out
on a limb and state that Java won’t
be the last innovation in our indus-
try. It’s nice to know that Inprise
has the ability to react when the
industry changes.
Like every seasoned developer, your ini-
tial reaction is: “Fine. How does this
help me today?” With Inprise giving
you a sneak peek at tomorrow’s vision,
you have a unique opportunity to pre-
pare for that future. You’ll reap the
rewards as you find each piece of soft-
ware you write becoming available to a
larger segment of the computer popula-
tion.

Who knows where the Delphi compil-
er will go next? More and more people
are asking for things like Delphi/Linux
and Delphi/Windows CE. While this
technology preview is a far cry from
implementing these products, it shows
that Inprise could provide these tools if
the market demanded.

Advances like MIDAS client for Java
further strengthen Inprise’s commit-
ment to get “Any Data. Any Time.
Anywhere.” It looks like it’s not just a
slogan at Inprise — it’s a way of life. ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact him
at http://www.execpc.com/~dmiser.

http://www.execpc.com/~dmiser

File | New
Directions / Commentary
The Conference: Borland/Inprise 1998

As usual, this year’s Borland/Inprise Conference was outstanding. I had the opportunity to meet and
exchange ideas with many readers, get the latest news on Delphi add-on tools, get a preview of

Delphi’s future, and attend some great sessions.
With this company’s new name and its
goal to find a niche with leading corpo-
rations, an important question remains:
“What implications does Inprise’s new
vision hold for the average developer?”
At the same time, with Inprise’s procla-
mations on the importance of its third-
party tool makers, these developers are
wondering if they can expect an even
closer relationship in the future. I’ll
explore these and other issues, but first
I’ll share some of my personal highlights
from the conference.

Personal highlights. At the center of
each conference are the excellent tutori-
als, presentations, showcases, and birds-
of-a-feather sessions. This year, I attended
— for the first time — one of the pre-
conference tutorials, Cary Jensen’s won-
derful overview of JBuilder, where he
gave a tour of its IDE and explained
some of the important differences
between JBuilder and Delphi. I also
attended Bob Swart’s perennial discussion
of optimization in which he presented
some nice profiling tips and techniques,
along with new aspects of Delphi 4.

Mark Miller’s session on Class Design
was spectacular — insightful, fast
paced, humorous, and impressive. Mark
is one of the few people with the audac-
ity to perform coding improvisations in
front of a large audience.

I attended Ray Konopka’s impressive
showcase on Raize Software’s new debug-
ging tool, CodeSite. The dozen or so
developers who showed up at 7 A.M.
(yes, A.M.) for the Project Jedi Birds-of-a-
Feather session, hosted by Robert Love,
proved that this project is alive and well.

I met one of my heroes, Tom Swan, and
other writers, including John Ayers. As
usual, I spent a lot of time in the exhibi-
tion area, learning the latest developments
from TurboPower, Eagle Software, Raize
Software, Nevrona Designs, Skyline Tools,
and some new tool makers I am sure we’ll
be hearing from in the future.
46 November 1998 Delphi Informant
From Borland to Inprise. Looking
ahead, what can we expect from
Inprise and Delphi? While I can’t
promise a definitive answer, I can
share some of my perceptions. These
are based in part on Inprise’s skillful
presentation of its vision, juxtaposed
with concerns of developers.

Many months before Borland decided to
change its name to Inprise, its new CEO,
Del Yocum, charted a very new direction.
The goal was twofold: find a new, unique
niche in the industry, and develop new
relationships with leading corporations.
The acquisition of Visigenic and the name
change were just the latest steps in the
mission outlined by Chairman Yocum at
the 1997 Borland Conference in
Nashville. Furthermore, Inprise’s interest
in developing and exploiting connections
between its tools on the one hand, and its
active courting of industry clients, is also
not new. What seems new in 1998 is a
cohesive game plan to actually make it so.

The vision was presented in an awe-
some theatrical keynote — à la Camelot
— where the wise King Yocum, con-
cerned for the welfare of the subjects of
the Land of Bor, leads his brave knights
on a quest for the Orb of Knowledge.
The Orb’s discovery leads to the estab-
lishment of a new kingdom: Inprise!
Other sessions filled in the details.

As impressive as all of this was, a nag-
ging concern continues to lurk in the
background. Most of us would agree
that Borland has produced the best
Windows development tools on this
planet. But, as it grows, will this new
incarnation of Borland called Inprise
remember the importance of the aver-
age developers, the soldiers in the
trenches? Without them, the battle will
surely be lost. Inprise must continue its
commitment to make available entry-
level versions of these tools so the ranks
of this army will continue to grow.

At the same time, third-party tool mak-
ers are an independent militia, fighting
under the same banner. While few at
this conference would be likely to praise
Microsoft as a tool maker, a number of
developers and writers made this obser-
vation: “Microsoft certainly knows how
to keep its third-party tool makers in the
loop.” Does Inprise do enough of this?

Borland/Inprise: You have produced the
fastest and most efficient compilers. You
have developed and made available an
open tools environment that allows for
infinite expansion. You have presented a
workable plan to integrate all these tools.
But do you realize you don’t have to pro-
duce every conceivable extension, be it a
component or an IDE enhancement?

Consider conducting frank and detailed
discussions with your partners — your
real partners, the third-party tool makers.
Let them know what you plan to do and
find out where they can make a contri-
bution. And never forget the entry-level
developer, without whom Delphi would
wither on the vine. King Yocum, with
the hope that you will see some wisdom
in your humble scribe’s suggestions, and
that your benevolence will continue to
shine on all of your subjects, I leave you
with this: “Ask not what your developers
can do for you; ask what you can do for
your developers.” ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He
has been developing education-related
applications with the Borland languages
for more than 10 years. He has published
a number of articles in various technical
journals. Using Delphi, he specializes in
writing custom components and imple-
menting multimedia capabilities in appli-
cations, particularly sound and music.
You can reach Alan on the Internet at
acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	Woll2Woll Ships InfoPower 4
	D C AL CODA Releases YourTraySpell Words Suite 2.0
	Sandage and Associates Ships CodeBase Components II for Delphi
	ASTA Releases ASTA 1.0
	South Pacific Announces TCompress 4.0 and TCompLHA 4.0 for Delphi 4
	Engineering Objects Announces Matrix Math Toolkit 4
	DBI Technologies Announces Release of Solutions::PIM Professional
	Pythoness Releases PSetting 2
	Soletta Announces Standard Delphi Library

	Newsline
	Inprise Announces Strategic Alliance with Sun Microsystems
	Inprise Details Enterprise Application Server Strategy
	American Automobile Association Builds Reservation System with VisiBroker for Java
	Inprise Transfers Visual dBASE Development and Marketing Responsibilities to InterBase

	On the Cover: Picture Perfect
	Roadmap to Reduction
	Enlightening Enlargement
	Spin Cycle
	Get Warped
	Begin Listing One — ShrinkPicture
	Begin Listing Two — EnlargePicture
	Begin Listing Three — RotatePicture

	Informant Spotlight: Tray Icons
	The Basics
	Unicode Applications
	Mousing Around
	Creating a Component
	What About Events?
	Run-time Methods
	Shell_NotifyIcon
	Managing the Messages
	TheNotifyTrayIcon Method
	Assigning the Icon
	How to Use Tray Icons
	Conclusion

	In Development: The Object Repository
	What Makes Up the OR?
	How to Share the OR
	Issues of Sharing
	Conclusion

	DBNavigator: Delphi Database Development
	Global vs. Local Aliases
	Databases vs. Aliases
	Configuring a Local Alias
	Controlling Database Parameters at Run Time
	Creating a Local Alias Based on a Global Alias
	Conclusion

	Sound + Vision: The Camera Never Lies
	Smile Please
	Through the Eye of a Needle
	Animated Textures
	Conclusion
	Begin Listing Four — WorldToCameraprocedure

	Dynamic Delphi: Thread-Safe DLLs
	Delphi’s Memory Manager
	Managing Thread-local Variables
	Two Important Issues
	Can Delphi Burp?
	The Win32 API
	Conclusion

	OP Tech: Is Delphi Running the Code?
	The Necessary Information
	Determining the Parent Process
	Determining the Presence of a Debugger
	Checking for Delphi’s Control
	Conclusion

	New & Used: Wanda the Wizard Wizard
	From the Trenches: The Joy of Demos
	File I New: The Conference: Borland/Inprise 1998

